K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Sửa đề: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2\ge0\)

Cái này đúng vậy ta có điều phải chứng minh

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

22 tháng 9 2019

chứng minh:(a+b+c)(1/a+1/b+1/c)<=10 nha mn. nhanh hộ mình

22 tháng 9 2019

Không mất tính tổng quát giả sử a≥b≥c\(\Rightarrow \left ( a-b \right )\left ( b-c \right )\geq 0\)

\(\Rightarrow ab+bc\geq b^{2}+ac\)

=>\(\frac{a}{c}+1\geq \frac{b}{c}+\frac{a}{b}\) ; \(\frac{c}{a}+1\geq \frac{b}{a}+\frac{c}{b}\)

=>\(\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}\leq \frac{a}{c}+\frac{c}{a}+2=>\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\leq 2+2(\frac{a}{c}+\frac{c}{a})\)

Đặt \(x=\frac{a}{c},\)ta có 2 >= x >= 1 nên x + 1 /x <=5/2 => \(2 + 2 ( a/c + c/a)\)<= 7 => \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)<=7 => đpcm

11 tháng 3 2018

Đáp án đúng : C

14 tháng 9 2018

1/a + 1/b + 1/c = 1/a+b+c => \(\frac{ab+bc+ac}{abc}\)\(\frac{1}{a+b+c}\)=> ( ab + bc + ac ) =abc  => a2b +ab+bc2+b2c+ac2+a2c +3abc = abc

=> a2b+ab2+bc2+ac2+a2c+b2c+abc+abc=0 . Sau đó,bạn phân tích được là : (a+c)(b+c)(a+b)=0 => a=-c hoặc a=-b hoặc b=-c

Vậy trong ba số a,b,c có hai số đối nhau(đpcm).

9 tháng 8 2019

Câu hỏi của Nguyễn Đa Vít - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo phần sau tại link trên!

12 tháng 6 2017

áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

                                vì a+b+c=1 => dpcm

12 tháng 6 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)

<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9     (*)

áp đụng cô si

\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

tương tự

\(\frac{a}{c}+\frac{c}{a}>=2\)

\(\frac{b}{c}+\frac{c}{b}>=2\)

=> (*) đúng Mà a+b+c=1

=> đpcm

Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath

Ban jtrar My làm òi nhé !

1 tháng 6 2018

Bạn tham khảo tại đây : 

Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath

~ Ủng hộ nhé 

10 tháng 6 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

18 tháng 11 2018

Ta có 1/a+1/b+1/c+1/d = 1,

Tương đương bcd+acd+abd+abc = abcd.

Trong tập hợp số tự nhiên N có 1 số tính chất sau đây: Tổng của 2 số lẻ là 1 số chẵn; tổng của 1 số lẻ và 1 số chẵn là số lẻ; tích của 2 số lẻ là 1 số lẻ; tích của 2 số chẵn là 1 số chẵn; tích của 1 số chẵn và 1 số lẻ là 1 số chẵn. Từ các tính chất trên ta thấy: Giả sử a, b, c, d đều lẻ thì lúc đó ta có: abcd lẻ, bcd lẻ, acd lẻ, abd lẻ, abc lẻ, bcd+acd+abd+abc chẵn.

Vậy suy ra a, b, c, d không thể cũng lẻ