Chứng tỏ đa thức M(x)=x4+\(\frac{11}{2}\)x2+x+5 vô nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`M(x)=P(x)+Q(x)`
`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`
`=2x^4+6`
Đặt `M(x)=0`
`<=>2x^4+6=0`
`<=>x^4=-3`(vô lý vì `x^4>=0`)
a) Ta có M(x)=P(x)+Q(x)
=(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))
=\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)
=(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)
=\(2x^4\)+6
Vậy M(x)=\(2x^4+6\)
b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x
nên \(2x^4+6\) \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x
Vậy M(x) vô nghiệm
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Ta có x4+2x2+1=(x2+1)2
Vì x^2>=0 với mọi x
Suy ra (x2+1)2>=(0+1)2=1>0
Vậy đa thức M vô nghiệm
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1