K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

(Bạn tự vẽ hình giùm)

Ta có \(\Delta ABC\)cân tại A

=> Đường cao AH cũng là đường trung tuyến của \(\Delta ABC\)

=> H nằm trên đường trung tuyến của \(\Delta ABC\)(1)

và G là trọng tâm của \(\Delta ABC\)

nên G nằm trên đường trung tuyến AH của \(\Delta ABC\)(2)

Từ (1) và (2) => A, G, H thẳng hàng (đpcm)

24 tháng 4 2016

A B C H G

Chưa phân loại

28 tháng 4 2016

a) Vì trong tg cân, đường cao cũng là đường trung tuyến, trung trực, đường phân giác nên đường cao AH chính là đường trung tuyến ứng với cạnh BC trong tg ABC

\(\Rightarrow\) HB = HC = 1/2.BC = 1/2.6 = 3 (cm)

\(\Rightarrow\) \(AH^2=BA^2-HB^2=5^2-3^2=16\)

\(\Rightarrow\) AH = 4(cm)

b) Vì AH là đường trung tuyến ứng với cạnh BC của tg ABC nên trọng tâm G của tg ABC cũng thuộc đường cao AH

\(\Rightarrow\) A,G,H thẳng hàng

b: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh huyền BC

nên AH là đường trung tuyến ứng với cạnh BC

mà AG là đường trung tuyến ứng với cạnh BC

và AG,AH có điểm chung là A

nên A,G,H thẳng hàng

3 tháng 5 2021

a) △ABC cân tại A có AH là đường cao

⇒ AH là đường trung tuyến

\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)

△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

b) △ABC có AH là đường trung tuyến

G là trọng tâm

\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng

c) △ABC cân tại A có AH là đường cao

⇒ AH là đường phân giác

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

△ABG và △ACG có:

\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)

\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)

9 tháng 1 2016

CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ

25 tháng 6 2020

tự kẻ hình nha

a) xét tam giác ABH và tam giác ACH có

AB=AC(gt)

ABC=ACB(gt)

AHB=AHC(=90 độ)

=> tam giác ABH= tam giác ACH( ch-gnh)

b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)

=>HB=HC=BC/2=12/2=6cm

ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2

=> AH=8 (AH>0)

d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến 

mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng

c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC

vì G thuộc AH=> GB=GC

xét tam giác ABG và tam giác ACG có

AB=AC(gt)

GB=GC( cmt)

AG chung

=> tam giác ABG= tam giác ACG(ccc)

chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu