a) Tìm số tự nhiên n thoả mãn \(2^{2n-1}+4^{n+2}=264\)
b) Tính giá trị P = \(\frac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}=\dfrac{\left(3^2\right)^{14}.\left(5^2\right)^6.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)
\(=\dfrac{3^{28}.5^{12}.2^{21}}{2^{21}.3^{27}.5^{12}}=\dfrac{3}{1}=3\)
\(A=\dfrac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}=\dfrac{\left(3^2\right)^{14}.\left(5^2\right)^6.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(3.2^3\right)^3}\)
=\(\dfrac{3^{28}.5^{12}.2^{21}}{2^{12}.3^{24}.5^{12}.3^3.2^9}\)=\(\dfrac{3^{28}.5^{12}.2^{21}}{2^{21}.3^{27}.5^{12}}=3\)
\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{\left(3^2\right)^{14}\cdot\left(5^2\right)^5\cdot\left(2^3\right)^7}{\left(3^2\cdot2\right)^{12}\cdot\left(5^4\right)^3\cdot\left(3\cdot2^3\right)^3}\)
\(=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{25}\cdot5^{12}\cdot2^{21}}=\frac{3^3}{5^2}=\frac{27}{25}\)
\(\frac{9^{14}}{18^{12}}.\frac{25^5}{625^3}.\frac{8^7}{24^3}\)
\(=\frac{9^{14}}{\left(9.2\right)^{12}}.\frac{25^5}{25^6}.\frac{8^7}{\left(8.3\right)^3}\)
\(=\frac{9^{14}}{9^{12}.2^{12}}.\frac{1}{25}.\frac{8^7}{8^3.3^3}\)
\(=\frac{9^2}{2^{12}}.\frac{1}{25}.\frac{8^4}{3^3}\)
\(=\frac{81}{4096}.\frac{1}{25}.\frac{4096}{27}\)
\(=\frac{81}{4096}.\frac{4096}{27}.\frac{1}{24}=3.\frac{1}{24}=\frac{3}{24}\)
**** **** ****
20112-(304+2012)+(2013+304)
=20112-304-2012+2013+304
=20112+(-2012+2013)+(-304+304)
=20112+1+0=20113
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{\left(3^2\right)^{14}.25^5.\left(2^3\right)^7}{2^{12}.\left(3^2\right)^{12}.\left(25^2\right)^3.\left(2^3\right)^3.3^3}=\)\(\frac{3^{28}.25^5.2^{21}}{2^{12}.2^9.3^{24}.3^3.25^6}=\frac{3^{28}.25^5.2^{21}}{2^{21}.3^{27}.25^6}\)\(=\frac{3}{25}\)
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)
=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)
b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)
lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)
Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)
2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 4x = 8(20 + xy)
=> x = 2(20 + xy)
=> x = 40 + 2xy
=> x - 2xy = 40
=> x(1 - 2y) = 40
Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)
mà x(1 - 2y) = 40
=> 1 - 2y \(\inƯ\left(40\right)\)(2)
Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)
Nếu 1 - 2y = 1 => x = 40
=> y = 0 ; x = 40
Nếu 1 - 2y = 5 => x = 8
=> y = -2 ; x = 8
Nếu 1 - 2y = -1 => x = -40
=> y = 1 ; y = - 40
Nếu 1 - 2y = -5 => x = -8
=> y = 3 ; x =-8
Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)
4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)
b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
a)\(2^{2n-1}+4^{n+2}=264\)
\(264=2^3\cdot3\cdot11\)
\(2^3=2^{\left(3+1\right)\div2}=2^2\Rightarrow n=2\)
\(4^{n+2}=264-2^3=256\)
\(256=4^4=4^{4-2}=4^2\Rightarrow n=2\)
vậy \(n=2\)
b) \(P=\frac{9^{14}\cdot25^6\cdot8^7}{18^{12}\cdot625^3\cdot24^3}\)
\(P=\frac{9^{14}\cdot25^6\cdot8^7}{18^{12}\cdot25^6\cdot25^6\cdot24^3}\)
\(P=\frac{9^{14}\cdot8^7}{18^{12}\cdot24^3}=3\)