K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

Xét tam giác ACI và tam giác BCI , có

CI là cạnh chung

AC = BC

AI= BI

=> tam giác ACI = tam giác BCI

Xét tam giác ACD và tam giác BCD , có

CD là cạnh chung

AD = BD

AC =BC

=> tam giác ACD = tam giác BCD

Xét tam giác ADI và tam giác BDI , có

DI là cạnh chung

AD = BD

AI = BI

=> tam giác ADI = tam giác BDI

ok 3 cặp nha thư

3 tháng 12 2021

Có hai trường hợp:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

   + ΔAIC = ΔBIC (c.g.c) vì:

AI = IB (gt)

∠AIC = ∠BIC = 90o

CI chung.

   + ΔAID = ΔBID(c.g.c) vì:

AI = ID (gt)

∠AID = ∠BID = 90o

DI chung.

   + ΔACD = ΔBCD(c.c.c) vì:

AC = BC (Lấy từ ΔAIC = ΔBIC)

AD = BD (Lấy từ ΔAID = ΔBID)

CD chung

5 tháng 11 2016

Mỗi đường thẳng cắt 100 đường thẳng còn lại nên tạo nên 100 giao điểm. Có 101 đường thẳng nên có 101. 100 giao điểm, nhưng mỗi giao điểm đã được tính hai lần nên chỉ có :
101. 100 : 2 = 5050 (giao điểm).

5 tháng 11 2016

Nếu đúng k dùm ạ <3

15 tháng 4 2016

trong 2014 điểm ta lấy ra 3

=> có số cách lấy là \(C^3_{2014}=1359502364\)

15 tháng 4 2016

1359502364

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

1
20 tháng 4 2018

 Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

19 tháng 7 2015

Giả sử trong 9 điểm ko có 3 điểm nào thẳng hàng thì vẽ đc: 9.8 : 2 = 36 (đường thẳng)

Giả sử trong 5 điểm ko có 3 điểm nào thẳng hàng thì vẽ đc: 5.4 : 2 = 10 (đường thẳng)

Mà qua 5 điểm thẳng hàng chỉ vẽ đc 1 đường thẳng.

Số đường thẳng giảm đi là: 10 - 1 = 9 (đường thẳng)

Vậy qua 9 điểm trong đó có đúng 6 điểm thẳng hàng thì vẽ đc: 36 - 9 = 27 (đường thẳng)

Bài này không cần hình

27 tháng 11 2015

số đường thẳng đi qua 9 điểm là:

n.(n-1):2=9.8:2=36 đường

số dường thẳng đi qua 5 điểm là:

n.(n-1):2=5.4:2=10 đường

vì trong 36 dường có 10 đường thẳng hàng và 10 đường có chỉ tính 1 đường nên:

(36-10)+1=27 đường

=>27 đường thẳng

 

25 tháng 1 2020

Hình tự vẽ ạ!

a, Xét  \(\Delta MED\)và \(\Delta AEM\)có:

\(\widehat{DME}=\widehat{ACM}\left(so-le-trong\right)\)

\(\widehat{MAE}=\widehat{ACM}\)(cùng chắn cung \(AD\))

\(\Rightarrow\widehat{DME}=\widehat{MAE}\)

\(\widehat{E}\)là góc chung.

\(\Rightarrow\Delta MED~\Delta AEM\left(1\right)\)

Xét \(\Delta BED\)và \(\Delta AEB\)có:

\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn cung \(BD\))

\(\widehat{E}\)là góc chung

\(\Rightarrow\Delta BED~\Delta AEB\left(3\right)\)

b, Từ \(\left(1\right)\Rightarrow\frac{ME}{AE}=\frac{ED}{EM}\Rightarrow ME^2=ED.EA\left(2\right)\)

Từ \(\left(3\right)\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Rightarrow EB^2=EA.ED\left(4\right)\)

Từ \(\left(2\right)\left(4\right)\Rightarrow EM=EB\)

\(\Rightarrow E\)là trung điểm của \(MB\left(Đpcm\right)\)

~~~Happy new year ~~~

15 tháng 5 2017

                         Giải

1 đường thẳng sẽ cắt 100 đường thẳng còn lại:

Vậy 1 đoạn thẳng có : 1 x 100 = 100 (giao điểm )

Số giao điểm đáng lẽ phải có là :

100 x 101 =10100

Nhưng do lặp lại nên số giao điểm có là :

10100:2 = 5050 ( giao điểm)

                Đáp số 5050 giao điểm.

15 tháng 5 2017

1 đương thẳng sẽ cắt 100 đường thẳng còn lại:

Vậy 1 đoạn thẳng có: 1 x 100 = 100 (giao điểm)

Số giao điểm đáng lẽ phải có là:

100 x 101 = 10100 (giao điểm)

Nhưng do lặp lại nên số giao điểm có là:

10100 : 2 = 5050 ( giao điểm)

Đáp số:5050 giao điểm

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\) 2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\) 

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

0