Bài 1. Chứng tỏ rằng : 1/2.4 + 1/4.6 + 1/6.8 +...+ 1/48.50 < 1/4
Bài 2.
a) Tính tổng S= 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110
b) Cho A= 2n+3/3n+2 . Tìm số nguyên n để A là số nguyên
GIÚP MÌNH NHA MÌNH ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Đặt A=\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{2016.2018}\)
2A=\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+...+\(\dfrac{2}{2016.2018}\)
2A=\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{2016}\)-\(\dfrac{1}{2018}\)
2A=\(\dfrac{1}{2}\)-\(\dfrac{1}{2018}\)
2A=\(\dfrac{504}{1009}\)
⇒A=\(\dfrac{252}{1009}\)
18:
a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)
=3*49/100=147/100
b: Để A là số nguyên thì n-1 thuộc Ư(2)
=>n-1 thuộc {1;-1;2;-2}
=>n thuộc {2;0;3;-1}
a,A=4/2.4+4/4.6+4/6.8+......+4/2012.2014
\(\Rightarrow\frac{1}{2}A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{2012\cdot2014}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2012}-\frac{1}{2014}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{2014}\)
\(\Rightarrow A=1-\frac{1}{1007}\)
\(\Rightarrow A=\frac{1006}{1007}\)
Ta có : D = \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
\(\Leftrightarrow D=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\right)\)
\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(\Leftrightarrow D=1-\frac{1}{1005}=\frac{1004}{1005}\)
D = 2.(2/2.4+2/4.6+...+2/2008.2010)
=2(1/2-1/4+1/4-1/6+......+1/2008-1/2
=2(1/2-1/2010)
=2.502/1005
=1004/1005
A=3n+1/n-1=3(n-1)+4/n-1=3+4/n-1
Để A là số nguyên thì 4/n-1 là số nguyên
=>n-1 thuộc Ư(4)=1,-1,2,-2,4,-4
=>n thuộc (2,0,3,-1,5,-3)
Ta có : \(A=\frac{3n+2}{n-1}+\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên thì n - 1 thuộc Ư(5) = {-1;-5;1;5}
n - 1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
A = \(3+\frac{5}{n-1}\) | 2 | -2 | 8 | 4 |
AK EM BẢO ANH NÈ EM NHỜ ANH CHỨ KO PHẢI EM TRẢ LỜI HỘ ANH
Bài 1 :
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\) ta có :
\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(A=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Chúc bạn học tốt ~