K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)

22 tháng 3 2018

Do not ask why hay quá!

Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)

Ta xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)

 Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)

\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)

Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....

\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)

\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)

Vậy .. . . 

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

10 tháng 6 2020

\(C=1.2.3+2.3.4+........+48.49.50\)

\(\Rightarrow4C=1.2.3.4+2.3.4.4+........+48.49.50.4\)

\(=1.2.3.4+2.3.4.\left(5-1\right)+.........+48.49.50.\left(51-47\right)\)

\(=1.2.3.4+2.3.4.5-1.2.3.4+........+48.49.50.51-47.48.49.50\)

\(=48.49.50.51\)

\(\Rightarrow C=\frac{48.49.50.51}{4}=1499400\)

23 tháng 7 2019

Ta có C = 1 x 2 x 3 + 2 x 3 x 4 + ... + 48 x 49 x 50

=>   4C  = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + ....  + 48 x 49 x 50 x 4

       4C   = 1 x 2 x 3 x 4 +  2 x 3 x 4 x (5 - 1)+ ... + 48 x 49 x 50 x (51 - 47)

       4C   = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + .... + 48 x 49 x 50 x 51 -  47 x 48 x 49 x 50 

       4C   = 48 x 49 x 50 x 51

       4C   = 5997600

         C   = 5997600 : 4

         C   = 1499400

Vậy C   = 1499400

2 tháng 1 2018

Đặt A = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +....+ 98 x 99 x 100

4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4

4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )

4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97

A = 98 x 99 x 100 x 97 / 4

A = 98 x 99 x 25 x 97

29 tháng 7 2017

4a=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+........+98.99.100(101-97)

4a=1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100

4a=98.99.100.101

a=(98.99.100.101):4=24497550