B=1x2x3+2x3x4+3x4x5+...+48x49x50 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)
Do not ask why hay quá!
Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)
Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)
\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)
Vậy .. . .
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
\(C=1.2.3+2.3.4+........+48.49.50\)
\(\Rightarrow4C=1.2.3.4+2.3.4.4+........+48.49.50.4\)
\(=1.2.3.4+2.3.4.\left(5-1\right)+.........+48.49.50.\left(51-47\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+........+48.49.50.51-47.48.49.50\)
\(=48.49.50.51\)
\(\Rightarrow C=\frac{48.49.50.51}{4}=1499400\)
Ta có C = 1 x 2 x 3 + 2 x 3 x 4 + ... + 48 x 49 x 50
=> 4C = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + .... + 48 x 49 x 50 x 4
4C = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 - 1)+ ... + 48 x 49 x 50 x (51 - 47)
4C = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + .... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50
4C = 48 x 49 x 50 x 51
4C = 5997600
C = 5997600 : 4
C = 1499400
Vậy C = 1499400
Đặt A = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +....+ 98 x 99 x 100
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4
4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97
A = 98 x 99 x 100 x 97 / 4
A = 98 x 99 x 25 x 97
4a=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+........+98.99.100(101-97)
4a=1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
4a=98.99.100.101
a=(98.99.100.101):4=24497550