K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3 2021

\(\left\{{}\begin{matrix}AE||DC\\CD\perp BD\end{matrix}\right.\) \(\Rightarrow AE\perp BD\) \(\Rightarrow\Delta AIE\) vuông tại E

Tương tự ta có \(DF\perp AC\Rightarrow\Delta DIF\) vuông tại F

\(\Rightarrow\) Hai tam giác vuông AIE và DIF đồng dạng ( \(\widehat{AIE}=\widehat{DIF}\) đối đỉnh)

\(\Rightarrow\dfrac{IE}{IF}=\dfrac{IA}{ID}\) (1)

Mà \(\widehat{EIF}=\widehat{AID}\) (đối đỉnh)

(1); (2) \(\Rightarrow\Delta EIF\sim\Delta AID\) (c.g.c)

\(\Rightarrow\widehat{EFI}=\widehat{ADI}\) hay \(\widehat{EFI}=\widehat{ADB}\)

Lại có \(\widehat{ADB}=\widehat{ACB}\) theo chứng minh câu b

\(\Rightarrow\widehat{EFI}=\widehat{ACB}\Rightarrow EF||BC\) (hai góc đồng vị bằng nhau)

undefined

NV
30 tháng 3 2021

Điểm D là điểm nào em nhỉ?

AE//DC thì điểm E nằm ở đoạn thẳng nào? DF//AB thì điểm F nằm ở đoạn thẳng nào?

30 tháng 3 2021

Mình làm cả a và b nữa nhé , nếu bạn thấy cần thiết 

undefined

22 tháng 5 2020

giúp mình câu c, thanks

13 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b, Xét Δ ABD và Δ EBD, có :

\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))

\(\widehat{BAD}=\widehat{BED}=90^o\)

BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)

=> AB = AE

Xét Δ ABE, có :

AB = AE (cmt)

=> Δ ABE cân tại E

Ta có :

Δ ABE cân tại E

BD là tia phân giác của \(\widehat{ABE}\))

=> BD là đường trung trực của AE

13 tháng 5 2022

c, Ta có : Δ ABD = Δ EBD (cmt)

=> AD = ED

Trong Δ CED, cạnh huyền DC là cạnh lớn nhất

=> ED < DC

Mà AD = ED (cmt)

=> AD < DC

3 tháng 4 2017

a) Trong tam giác ABC có AB<AC

=>góc ACB< góc ABC

Có tam giác ABH vuông tại H

=>HAB+ABH=90 độ )

=>60 độ+ABH=90 độ

ABH=30 độ

b) AD là tia phân giác của góc A

=>EAI= IAB=60độ:2= 30 độ

Xét tam giác vuông BHA và tam giác vuông AIB có

Cạnh huyền AB chung

ABH=IAB=30 độ

=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)

c) Xét tam giác vuông AIE và tam giác vuông AIB có

Cạnh AI chung

EAI=IAB=30 độ

=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)

=>AE=AB ( 2 cạnh tương ứng)

=> Tam giác ABE là tam giác cân và có EAB=60 độ

=> Tam giác ABE là tam giác đều

d) Gọi Bx là tia đối của tia BA

Xét tam giác ADB và tam giác ADC có

AB=AE

EAD=DAB=30 độ

Cạnh AD chung

=> tam giác ADB= tam giác ADC (c.g.c)

=> DB=DE (1) và góc ABD=góc AED

do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)

CBx>góc C ( CBx là góc ngoài của tam giác ABC)

=> CED>C, do đó DC>DE (2)

Từ (1) và (2) =>DC>DB

17 tháng 4 2018

a) Ta có: AB < AC

=> ACB < ABC 

ABH = 90 - 60 = 30o

b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o

ABI = 90 - 30 = 60

Xét 2 tam giác vuông AIB và BHA có: AB (chung)

Ta có: BAH = ABD = 60 (cmt)

=> AIB = BHA (ch - gn)

c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)

=> AIB = BHA = 60o

=> BEA = 180 - 60 - 60 = 60o

Có: ABE = BEA = EAB = 60

=> Tam giác ABE là tam giác đều.

d) Gọi Bx là tia đối của tia BA

Xét tam giác ADB  và tam giác ADC có: AB = AE 

EAD = DAB = 30o

Cạnh AD chung.

=> Tam giác ADB = tam giác ADC (c.g.c)

=> DB = DB (1) và góc ABD = góc AED

Do đó:

CBx = CED (cùng kề bù với 2 góc = nhau)

CBx > C

=> DC > DE (2)

Từ (1); (2) => DC > DB

5 tháng 4 2016

a)

ta có : AB<AC

suy ra ACB<ABC

ABH=90-60=30

b)

DAC=DAB=90-(A/2)=90-30=60

ABI=90-30=60

xét 2 tam giác vuông AIB và BHA có

AB(chung)

ta có:

BAH=ABD=60(cmt)

suy ra AIB=BHA(CH-GN)

c)

theo câu a, ta có tam giác AIB=BHA(CH-GN)

suy ra ABI=BAC=60 độ

BEA=180-60-60=60 độ

ta có: ABE=BEA=EAB=60 suy ra tam giác ABE đều

5 tháng 4 2016

a,Ta có :

AB<AC (gt)

=> C<B

=> góc ABC < góc ACB

Tính góc ABH

Ta có : A+H+B=180 ( tổng 3 góc trong 1 tam giác )

60+90+B=180 ( góc H =90 vì vuông góc )

150+B=180

B=180-150

B=30

=>ABH=30

b,Xét 2 tg AIB= tg BHA vuông tại I và H

Có : I là góc chung

=> tg AIB= tg BHA(gcg)

c,ko bt lm 

d,ko bt luôn