Tính giá trị nhỏ nhất của B=x^2-2xy+6xy^2-12x+2y+45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)
\(C=2x^2+9y^2-6xy-2x+2018\)
\(=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-3y\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2+2017\ge2017\)
\(\Leftrightarrow C\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2017\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(D=x^2-2xy+6y^2-12x+2y+45\)
\(=\left(x^2-2xy+y^2\right)-\left(12x+12y\right)-10y+5y^2+45\)
\(=\left(x-y\right)^2-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-y-6\right)^2\ge0\\5\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-y-6\right)+5\left(y-1\right)^2+4\ge4\)
\(\Leftrightarrow D\ge4\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Vậy \(D_{Min}=4\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(A=x^2-2xy+6y^2-12x+2y+54\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do: \(\left(x-y-6\right)^2\ge0\forall xy\); \(5\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y-6\right)^2+5\left(y-1\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(\Rightarrow A_{Min}=4\)
Dấu "=" xảy ra khi \(x=7;y=1\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Gía trị nhỏ nhất : \(A=4\)Khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=7\end{cases}}\)
\(A=\left(x^2+y^2+36-2xy-12x+12y\right)+5y^2-10y+5+109\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+109\ge109\)
\(A_{min}=109\) khi \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
(x^2+y^2-12y-12x+36)+(5y^2-10y+5)+4=(x-y-6)^2+5(y-1)^2+4>=4
GTNN A=4
khi y=1
x=7