giúp mình với
Biết \(\widehat{xOy}\)và \(\widehat{yOz}\) là 2 góc kề bù và \(\frac{1}{4}\).\(\widehat{xOy}\)= \(\frac{1}{5}.\widehat{yOz}\). Tính số đo \(\widehat{xOy}\)và \(\widehat{yOz}\)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz nằm về hai phía đối với đường thẳng chứa tia Oy nên hai góc xOy và yOz là hai góc kề nhau. Hơn nữa, hai góc xOy và yOz có tổng bằng góc xOz =180 độ nên hai góc xOy và yOz là hai góc bù nhau.
Vậy hai góc xOy và yOz là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz là hai tia đối nhau nên hai góc xOy và yOz là hai góc kề bù.
b) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot nằm về hai phía đối với đường thẳng chứa tia Oz nên hai góc yOz và zOt là hai góc kề nhau. Hơn nữa, hai góc yOz và zOt có tổng bằng góc xOz =180 độ nên hai góc yOz và zOt là hai góc bù nhau.
Vậy hai góc yOz và zOt là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot là hai tia đối nhau nên hai góc yOz và zOt là hai góc kề bù.
c) Do
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} = \widehat {xOz} = 180^\circ ;\\\widehat {yOz} + \widehat {zOt} = \widehat {yOt} = 180^\circ \end{array}\)
Vậy \(\widehat {xOy} + \widehat {yOz} = \widehat {yOz} + \widehat {zOt}\)
\( \Rightarrow \widehat {xOy} = \widehat {zOt}\)
Chú ý: Ta có thể dùng dấu hiệu sau: 2 góc kề bù khi có chung đỉnh, chung một cạnh, 2 cạnh còn lại là 2 tia đối nhau.
xOy + tOx = 180o ( kề bù)
xOy + yOz = 180o ( kề bù)
mà xOy = xOy.
=> 2 góc này bằng nhau ( 2 góc cùng kề bù với góc thứ 3 thì bằng nhau).
=> 2 góc đối đỉnh.
like và tim bạn nhé
Vì hai góc \(\widehat {xOy},\widehat {yOz}\) kề bù với nhau nên
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} = 180^\circ \\ \Rightarrow 25^\circ + \widehat {yOz} = 180^\circ \\ \Rightarrow \widehat {yOz} = 180^\circ - 25^\circ = 155^\circ \end{array}\)
\(\widehat{xoy}=2.\widehat{yOz}\)
\(\widehat{xOy}+\widehat{yOz}=180^o\left(gt\right)\)
hay \(2.\widehat{yOz}+\widehat{yOz}=180^o\)
hay \(3.\widehat{yOz}=180^o\)
\(\Rightarrow\widehat{yOz}=\frac{180^o}{3}=60^o\)
\(\Rightarrow\widehat{xOz}=180^o-\widehat{yOz}=180^o-60^o=120^o\)
Bài 2:
\(a.\)Vì \(\widehat{xOy}\)kề bù với góc \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(60^0+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(\widehat{yOz}=180^0-60^0=120^0\)
\(b.\) Vì \(Ot\)là tia phân giác \(\widehat{xOy}\)\(\Rightarrow\)\(\widehat{tOy}=\frac{\widehat{xOy}}{2}=\frac{60^0}{2}=30^0\)
Vì \(Om\)là tia phân giác \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{yOm}=\frac{\widehat{yOz}}{2}=\frac{120^0}{2}=60^0\)
Vì \(Oy\)nằm giữa 2 tia \(Ot\)và \(Om\) \(\Rightarrow\) \(\widehat{tOy}+\widehat{yOm}=\widehat{tOm}\)
\(\Rightarrow\) \(30^0+60^0=\widehat{tOm}\)
\(\Rightarrow\) \(90^0=\widehat{tOm}\)
Vậy \(\widehat{tOm}\)là góc vuông
Bài 2: Vì góc xOy và yoz kề bù nên góc xOz= 180 độ Ta có : Góc xoy + góc yoz = xOz Hay : 60 độ + góc yoz = 180 độ góc yoz = 180 độ - 60 độ = 120 độ Vậy....
=> ^xOz + ^xOy = 180 độ( kề bù)
Mà ^xOy=80 độ
=> ^xOz + 80 độ = 180 độ
=>^xOz =180 -80
=> ^ xOz =100 độ
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{yOz}+80^0=180^0\)
hay \(\widehat{yOz}=100^0\)
Vậy: \(\widehat{yOz}=100^0\)
Ta có : \(\widehat{xOy}+\widehat{yOz}=180^o\) (hai góc kề bù)
Mà : \(\widehat{xOy}-\widehat{yOz}=100^o\) (gt)
Nên : \(\widehat{xOy}+\widehat{yOz}-\left(\widehat{xOy}-\widehat{yOz}\right)=180^o-100^o\)
<=> \(\widehat{xOy}+\widehat{yOz}-\widehat{xOy}+\widehat{yOz}=80^o\)
=> \(2.\widehat{yOz}=80^o\)
=> \(\widehat{yOz}=\frac{80^o}{2}=40^o\)
=> \(\widehat{xOy}=180^o-40^o=140^o\)
a) Hai góc \(\widehat {xOy}\) và \(\widehat {yOz}\) có cạnh Oy chung, không có điểm trong chung
b) Ta có:
\(\begin{array}{l}\widehat {xOy} = 30^\circ ,\widehat {yOz} = 45^\circ ,\widehat {xOz} = 75^\circ \\ \Rightarrow \widehat {xOy} + \widehat {yOz} = \widehat {xOz}\end{array}\)
c) Ta có: \(\widehat {mOn} + \widehat {nOp} = 33^\circ + 147^\circ = 180^\circ \)
Ta có : Góc xoy và góc yoz là 2 góc kề bù
=> góc xoy + góc yoz = 180 độ ( 1 )
Lại có : \(\frac{1}{4}\)góc xoy \(=\frac{1}{5}\)góc yoz
\(\Rightarrow\)góc xoy = \(\frac{4}{5}\)góc yoz ( 2 )
Thay ( 2 ) vào ( 1 ) , ta được :
góc xoy + góc yoz = 180 độ
=> \(\frac{4}{5}\)góc yoz + góc yoz = 180 độ
=> \(\frac{9}{5}\)góc yoz = 180 độ
=> góc yoz = 180 độ : \(\frac{9}{5}\)
=> góc yoz = 100 độ
Mà góc yoz + góc xoy = 180 độ
=> góc xoy = 180 độ - 100 độ = 80 độ
Vậy góc xoy = 80 độ ; góc yoz = 100 độ
Chúc bạn học tốt !!!
Cho mk hình đi bạn