K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

DO đó: ΔABE\(\sim\)ΔACF

SUy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AE\cdot AC\)

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc EAF chung

Do đó: ΔAEF\(\sim\)ΔABC

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

24 tháng 5 2023

Mn giúp em với ạ.

1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

2: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng vơi ΔABC

3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF/HB=HE/HC

Xét ΔHFE và ΔHBC có

HF/HB=HE/HC

góc FHE=góc BHC

=>ΔFHE đồng dạng với ΔBHC

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

10 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét ΔAEH và ΔADC có:

∠(AEH) = ∠(ADC) =  90 0

∠(DAC) là góc chung

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ AE.AC = AD.AH

Xét Δ BEC và ΔADC có:

∠(BEC) = ∠(ADC) = 90 0

∠(ACD) là góc chung

⇒ ΔBEC ∼ ΔADC (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9