Tìm x
1/3+1/6+1/10+...+2/x(x+1)=2003/2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2004}{2005}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2004}{2005}\)
=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2004}{2005}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2004}{2005}:2=\frac{1002}{2005}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}\)
=> \(x+1=4010\)
=> \(x=4010-1\)
=> \(x=4009\)
Sửa đề\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2004}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{4008}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2003}{4008}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4008}\)
=> \(\frac{1}{x+1}=\frac{1}{4008}\)
=> x + 1 = 4008
=> x = 4007
Vậy x = 4007
a) x+(x+1)+(x+2)+(x+3)+...+2003=2003
x+(x+1)+(x+2)+(x+3)+...+2003=2003
X+(x+1)+(x+2)+(x+3)+...+2002=0
( Vì ta thấy đây là tổng của một dãy số các số hạng liên tiếp nên day tren co so cuoi la 2002 va tong tat ca bang 0 vi 2003-2003=0 ma)
Goi so so hang cua day so tren la n(nkhac 0)
Suy ra ta co ((2002+x).n):2=0
suy ra (2002+x).n=0
Mà n khác 0
Suy ra 2002+x=0
x=0-2002
x=-2002
Vay x=-2002
Cậu b bạn làm tương tự nhé!
Neu to co lam sai thi ban thong cam nhe!
1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x + 1) = 4007/2004
2/2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x + 1) = 4007/2004
2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x + 1)) = 4007/2004
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x + 1 = 4007/2004 : 2
1 - 1/x + 1 = 4007/2004 × 1/2
x/x + 1 = 4007/4008
=> x = 4007
2)
đặt a= 1+2-3-4+5+6-........+2002-2003-2004+2005+2006
Biểu thức a có (2006-1)/1+1=2006(số hạng)
Nhóm 4 số hạng vào một nhóm ta có 2006 / 4= 501 dư 2 số hạng để ra một số đầu và một số cuối
a= 1+(2-3-4+5)+(6-7-8+9)-.........+(2002-2003-2004+2005) + 2006
a=1+0+0+......+0+2006
a=1+2006
a=2007
vậy a = 2007
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(=\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\frac{1}{n+1}=\frac{1}{4008}\)
\(\Rightarrow\)n+1=4008
n=4007
Vậy n=4007
TA CÓ :\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{n\left(n+1\right)}\)\(=\frac{2003}{2004}\)
\(Nhân\)\(cả\)\(hai\)\(vế\)\(với\)\(\frac{1}{2}\), TA ĐƯỢC :
\(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n.\left(n+1\right)}\right)\)\(=\frac{1}{2}.\frac{2003}{2004}\)
=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{n.\left(n+1\right)}\)\(=\frac{2003}{4008}\)
=>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{n.\left(n+1\right)}\)\(=\frac{2003}{4008}\)
=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{n}-\frac{1}{n+1}\)\(=\frac{2003}{4008}\)
=>\(\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
=>\(\frac{1}{n+1}=\frac{1}{4008}\)
=> \(n+1=4008\)
=> \(n=4007\)( Thỏa mãn điều kiện : \(n\in N\))
Vậy n=4007
1: \(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x=0\)
=>\(\left(x-1\right)^x\cdot\left[\left(x-1\right)^2-1\right]=0\)
=>\(x\left(x-1-1\right)\cdot\left(x-1\right)^x=0\)
=>x(x-2)(x-1)^x=0
=>x=0;x=2;x=1
2: \(\Leftrightarrow\left(6-x\right)^{2003}\left(x-1\right)=0\)
=>6-x=0 hoặc x-1=0
=>x=6;x=1
3: =>(7x-11)^3=32*25+200=1000
=>7x-11=10
=>7x=21
=>x=3
4: =>x^2-1=-3 hoặc x^2-1=3
=>x^2=-2(loại) hoặc x^2=4
=>x=2 hoặc x=-2
Ta có :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{2004}:2\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4008}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4008}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{4008}\)
\(\Leftrightarrow\)\(x+1=4008\)
\(\Leftrightarrow\)\(x=4007\)
Vậy \(x=4007\)
Chúc bạn học tốt ~