K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

a)  Xét   \(\Delta AEB\) và     \(\Delta AFC\)có:

\(\widehat{AEB}=\widehat{AFC}=90^0\)

\(\widehat{BAC}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\)(g.g)

b)  Xét  \(\Delta HEA\)và    \(\Delta HDB\) có:

\(\widehat{HEA}=\widehat{HDB}=90^0\)

\(\widehat{AHE}=\widehat{BHD}\)(đối đỉnh)

suy ra:   \(\Delta HEA~\Delta HDB\)(g.g)

\(\Rightarrow\)\(\frac{HE}{HD}=\frac{HA}{HB}\)

\(\Rightarrow\)\(HD.HA=HE.HB\)

a: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\left(1\right)\)

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{FBC}=180^0\)

mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)

nên \(\widehat{AEF}=\widehat{ABC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{xAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

Ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Gọi giao điểm của AI và (O) là D

Xét (O) có

AO là bán kính

AO cắt (O) tại D

Do đó: AD là đường kính của (O)

Gọi giao điểm của AH với BC là N

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại N

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔANB vuông tại N và ΔACD vuông tại C có

\(\widehat{ABN}=\widehat{ADC}\)

Do đó: ΔANB~ΔACD

=>\(\widehat{BAN}=\widehat{CAD}\)

=>\(\widehat{BAN}+\widehat{NAD}=\widehat{CAD}+\widehat{NAD}\)

=>\(\widehat{PAE}=\widehat{IAB}\)

Xét ΔAPE và ΔAIB có

\(\widehat{PAE}=\widehat{IAB}\)

\(\widehat{AEP}=\widehat{ABI}\)

Do đó: ΔAPE~ΔAIB

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

19 tháng 4 2019

Hình bạn tự vẽ nhé  

a/ xét tam giác AEC và tam giác AFB ta có : 

A là góc chung 

góc AEC = góc AFB (=90 độ )

=> tam giác AEC ~ tam giác AFB (g.g) 

b) vì tam giác AEC ~ tam giác AFB ( cmt)

=> AE/AF=AC/AB => AE*AB = AF*AC 

c) xét tam giác BDH  và tam giác BFC ta có : 

góc B chung 

góc BDH = góc BFC (=90 độ)

=> tam giác BDH ~ tam giác BFC (g.g)

=>BH/BC=BD/BF => BH*BF=BC*BD (1)  

xét tam giác CHD và tam giác CBE ta có :

C là góc chung 

góc CDH = góc CEB (=90 độ )

=> tam giác  CHD ~ tam giác  CBE (g.g)

=> CH/CB= CD/CE => CH*CE=CB*CD (2) 

từ (1) và (2) => BH.BF +CH.CE=  BC.BD+ CB.CD =  BC ( BD +CD)= BC.BC= BC2 

=> BH.BF+CH.CE=BC2 (đpcm)

d)  xét tam giác AEH và tam giác AMD ta có :

A là góc chung 

góc AEH = góc AMD (= 90 độ )

=> t/g AEH ~t/g AMD (g.g)=> AE/AM=AH/AD (3) 

xét t/ g AFH và AND ta có :

A là góc chung 

góc AFH = góc AND (=90 độ )

=> t/g AFH ~ t/g AND (g.g) => AF/AN=AH/AD (4)

từ (3) và (4) => AE/AM=AF/AN 

=> EF // MN hay MN//EF ( định lý Ta - lét đảo )

6 tháng 4 2020

con điênnnnnnnnnnnnnn

6 tháng 4 2020

2k mấy