K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

\(\Rightarrow\Delta AHB=\Delta AHC\)  (Hai cạnh góc vuông)

b) Do HK // AB nên \(\widehat{AHK}=\widehat{BAH}\)  (Hai góc so le trong)

Lại có \(\widehat{BAH}=\widehat{CAH}\)

\(\Rightarrow\widehat{KAH}=\widehat{KHA}\)

Vậy thì \(\widehat{KHC}=\widehat{KCH}\) (Cùng phụ với hai góc trên)

\(\Rightarrow\) tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có \(2\left(AH+BK\right)=2\left(3HG+3GK\right)=6\left(HG+GK\right)\)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên \(6\left(HG+GK\right)>6.HK=3.2HK=3AC\)

Tóm lại: \(2\left(AH+BK\right)>3AC\)

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông AHB và tam giác vuông AHC có:

Cạnh AH chung

HB = HC   

⇒ΔAHB=ΔAHC  (Hai cạnh góc vuông)

b) Do HK // AB nên ^AHK=^BAH  (Hai góc so le trong)

Lại có ^BAH=^CAH

⇒^KAH=^KHA

Vậy thì ^KHC=^KCH (Cùng phụ với hai góc trên)

 tam giác KHC cân tại K.

c) Ta có KA = KH = KC nên K là trung điểm AC.

Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.

Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)

Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)

d) Ta có 2(AH+BK)=2(3HG+3GK)=6(HG+GK)

Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK

Vậy nên 6(HG+GK)>6.HK=3.2HK=3AC

Tóm lại: 2(AH+BK)>3AC

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

31 tháng 3 2016

A B C E N I D M O 1 2 2 1 2 3 1 3 1

a) ta có tam giác abc cân tại A suy ra B=C3

C3=C1(2 góc đđ) suy ra B=C1

xét 2 tam giác vuông MBD và NCE

B=C1(cmt)

BD=CE(gt)

D1=E=90 độ

suy ra tam giácMBD=NCE(g.c.g)

suy ra MD=NE

31 tháng 3 2016

b) theo câu a, ta có:MD=NE

I1=I2(2 góc đđ)

DMI=90-I1

ENI=90-I2

suy ra DMI=ENI
xét tam giác MDI và tam giác NIE

MD=NE( theo câu a)

DMI=ENI(cmt)

MDI=NEI=90

suy ra tam giác MDI=NIE(g.c.g)

suy ra IM=IN suy ra I là trung điểm của MN

21 tháng 4 2017

a) VÌ DE//BC 

SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE

b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)

\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC