K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Bài này chỉ cần đặt x^2+x = t ( ĐK t ≥0) 

Phương trình trở thành dạng quen thuộc 

t^2 +4t –12 =0

Rồi giải tìm t

Sau đó trả tiền lại tìm x

Bạn làm tốt nhá

6 tháng 4 2018

Trả lời

 pt<=>x^4+2x^3+x^2+4x^2+4x-12=0 
<=>x^4+2x^3+5x^2+4x-12=0 
<=>(x-1)(x^3+3x^2+8x+12)=0 (áp dụng biểu đồ hoocner) 
tiếp theo bạn giải pt bậc 3 bằng máy tính bỏ túi.

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

21 tháng 3 2021

   \(\dfrac{1}{x+2}\)+\(\dfrac{5}{x-2}\)=\(\dfrac{2x-12}{x^2-4}\)

                    (đkxđ: x≠2, x≠-2)

⇔ \(\dfrac{x-2}{x^2-4}\)+\(\dfrac{5\left(x+2\right)}{x^2-4}\)\(\dfrac{2x-12}{x^2-4}\)

⇔ x-2+5(x+2)=2x-12

⇔ x-2+5x+10=2x-12

⇔ 4x=-20

⇔ x=-5(tm)

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một...
Đọc tiếp

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB

1

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

16 tháng 5 2019

(x^2+x)^2+4(x^2+x)=12 
<=>x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0 
<=>x^4 + 2x^3 + 5x^2 + 10x - 6x - 12 = 0 
<=>x^3(x+2) + 5x(x+2)-6(x+2) = 0 
<=>(x+2)(x^3 + 5x - 6) = 0 
<=>(x+2)(x^3 - x+ 6x - 6) =0 
<=>(x+2)[(x-1)(x^2+x+1) + 6(x-1)] = 0 
<=>(x+2)(x-1)(x^2+x+7) = 0 
Ta có: x^2+x+7 >=0 
<=>
​[ x+2 = 0 <=> x = -2     
[x - 1 = 0 <=> x = 1 
Vậy pt có 2 ng x=1, x=-2

17 tháng 5 2019

Đặt ẩn phụ là xong á?

Đặt \(x^2+x=t\).Phương trình trở thành:

\(t^2+4t-12=0\Leftrightarrow t^2-2t+6t-12=0\)

\(\Leftrightarrow t\left(t-2\right)+6\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\left(1\right)\\x^2+x+6=0\left(2\right)\end{cases}}\)

Giải (1) được hai nghiệm: x = 1; x = -2

Giải (2) ta có: \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\forall x\)

Nên (2) vô nghiệm.

Vậy phương trình có 2 nghiệm x = 1; x = -2

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$

16 tháng 3 2017

<=>x2x+ x+ 4x2 +4x = 12

<=>   x+ 2x3 + 5x2+ 10x - 6x - 12 =0

<=>     x3(x + 2 ) + 5x ( x+2) - 6 ( x +2 )=0

 <=> ( x + 2 ) ( x3 - x + 6x - 6 ) =0

<=>  ( x + 2 ) ( x ( x -1) ( x +1) + 6 ( x - 1)) = 0

<=>  ( x + 2 ) ( x - 1 ) ( x2 + x+ 6 ) = 0

<=>   x + 2 = 0

<=>  x = -2

<=>   x - 1 = 0

<=> x = 1 

<=> x + x  = -6 ( vô nghiệm )

a: =>x-2+2=x^2+2x

=>x^2+2x=x

=>x^2+x=0

=>x(x+1)=0

=>x=0(loại) hoặc x=-1(nhận)

b: =>-9(5x-8)+4(7x-12)=-6(x+18)

=>-45x+72+28x-48=-6x-108

=>-17x+24=-6x-108

=>-11x=-132

=>x=12

\(x-\frac{2}{4}-\frac{2}{3}\ge5x-\frac{9}{12}\)

\(\Leftrightarrow x-\frac{7}{6}\ge5x-\frac{3}{4}\)

\(\Leftrightarrow-4x\ge\frac{5}{12}\)

\(\Leftrightarrow-\frac{5}{56}\ge x\)