K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

bài 2 : 

a, abcdeg = ab.10000 + cd.100 + eg

             = ab.9999 + ab + cd.99 + cd + eg

             = (ab.9999 + cd.99) + (ab+cd+eg)

vì 9999 chia hết cho 11 => ab.9999 chia hết cho 11    (1)

    99 chia hết cho 11 => cd.99 chia hết cho 11          (2)

    theo đề bài (ab+cd+eg) chi hết cho 11                 (3)

(1)(2)(3) => abcdeg chia hết cho 11

phần b thì bạn chứng minh 10^28 + 8 chi hết cho 8 và 9 là được

27 tháng 2 2017

Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d

=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d 

=>12n-8 chia hết cho d và 12n-9 chia hết cho d 

=>(12n-8)-(12n-9) chia hết cho d 

=>1 chia hết cho d 

=>d=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản

27 tháng 2 2017

Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m

=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m

=>12n+3 chia hết cho m và 12n+2 chia hết cho m 

=>(12n+3)-(12n+2) chia hết cho m

=>1 chia hết cho m

=>m=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản

13 tháng 7 2018

\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+-\frac{1}{56}+-\frac{1}{72}+-\frac{1}{90}\)

\(\Rightarrow A=-1\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}\right)\)

\(A=-1\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(\Rightarrow A=-\frac{3}{20}\)

13 tháng 7 2018

\(A=\frac{-1}{20}-\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)

\(A=-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(A=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=-\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(A=\frac{-3}{20}\)

#

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a)

i.Ta có: BCNN(12, 30) = 60

60 : 12 = 5; 60 : 30 = 2. Do đó:

\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)

ii.Ta có: BCNN(2, 5, 8) = 40

40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:

\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)

\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)

\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).

b)

i.Ta có: BCNN(6, 8) = 24

24 : 6 = 4; 24: 8 = 3. Do đó

\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)

ii. Ta có: BCNN(24, 30) = 120

120: 24 = 5; 120: 30 = 4. Do đó:

\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)

25 tháng 3 2016

A= \(\frac{-1}{4\cdot5}+\frac{-1}{5\cdot6}+\frac{-1}{6\cdot7}+\frac{-1}{7\cdot8}+\frac{-1}{8\cdot9}+\frac{-1}{9\cdot10}\)

=\(-1\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)

=\(-1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)

=\(-1\left(\frac{1}{4}-\frac{1}{10}\right)\)

=\(-1\cdot\frac{3}{20}\)

=\(\frac{-3}{20}\)

=\(\frac{-1}{20}\)

25 tháng 3 2016

phân tích mẫu: 20=4.5 , 30= 5.6 , 42=6.7 tương tự rồi tách cả phân số là được

 

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm