\(\frac{4}{1\cdot5}\)+\(\frac{4}{5\cdot9}\)+\(\frac{4}{9\cdot13}\)+\(\frac{4}{13\cdot17}\)+\(\frac{4}{17\cdot21}\)< 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{2}{1\cdot5}+\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+\frac{2}{13\cdot17}+\frac{2}{17\cdot21}\)
\(C=\frac{2}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)
= 7/4.(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + 4/17.21)
= 7/4.(1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21)
= 7/4.(1-1/21)
= 7/4.20/21 = 5/3
Tk mk nha
Đặt biểu thức bằng A
4/7A=1-1/5+1/5-1/9+...+1/17_1/21
4/7A=1-1/21
4/7A=20/21
A=35/21=5/3
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
=\(2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
=\(2\left(1-\frac{1}{21}\right)\)
=\(\frac{2.20}{21}=\frac{40}{21}\)
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
gạch tất cả số 5, 9, 13
là bằng 4.x/1 + 4.x/17
rồi gợi ý thế thôi nhé
\(\frac{4.x}{1.5}+\frac{4.x}{5.9}+\frac{4.x}{9.13}+\frac{4.x}{13.17}=16\)
\(x.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}\right)=16\)
\(x.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\right)=16\)
\(x.\left(1-\frac{1}{17}\right)=16\)
\(x.\frac{16}{17}=16\Rightarrow x=16:\frac{16}{17}=16.\frac{17}{16}\)
\(\Rightarrow x=17\)
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
Áp dụng theo dạng toán số ai cập ta có:
4/1.5+4/5.9+4/9.13+4/13.17+4/17.21=1/1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21=1-1/21 < 1
Vậy tổng đó < 1