K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Ta có : \(\frac{2a+b+c}{a+b+c}=\frac{a+a+b+c}{a+b+c}=1+\frac{a}{a+b+c}\)

          \(\frac{2b+c+d}{b+c+d}=\frac{b+b+c+d}{b+c+d}=1+\frac{b}{b+c+d}\)

         \(\frac{2c+d+a}{d+a+c}=\frac{c+c+d+a}{d+a+c}=1+\frac{c}{d+a+c}\)

           \(\frac{2d+a+b}{d+a+b}=\frac{d+d+a+b}{d+a+b}=1+\frac{d}{d+a+b}\)

Lại có:

     M       =      \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)

=> M     \(>\frac{a}{a+b+c+d}+\frac{b}{b+c+d+a}+\frac{c}{d+a+c+b}+\frac{d}{d+a+b+c}\)

            \(=\frac{a+b+c+d}{a+b+c+d}=1\)

=> M > 1 (1)

Và :

 M      =       \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)

Mà \(\frac{a}{a+b+c}< 1;\frac{b}{b+c+c}< 1;\frac{c}{d+a+c}< 1;\frac{d}{d+a+b}< 1\)

=> M  \(< \frac{a+d}{a+b+c+d}+\frac{b+a}{b+c+d+a}+\frac{c+b}{d+a+c+b}+\frac{d+c}{a+b+c+d}\)

=> M   \(< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}\)

=> M   \(< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

=> M< 2 (2)

Từ (1) và (2) ta có 1 < M < 2. => M ko phải là số tự nhiên. Mà 1 là số tự nhiên => A ko phải là số tự nhiên

                              Vậy ..................(đpcm)

5 tháng 4 2018
Lm mỏi hết cả tay, ko nhận k nào thì ...
17 tháng 9 2020

Với a,b,c,d là các số nguyên dương ta luôn có :

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

Cộng vế với vế ta được :

\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)

Do đó , S không là số tự nhiên.

20 tháng 9 2020

\(\frac{d}{ưưda}ư\)

7 tháng 2 2018

Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

Từ (1) và (2) => 1<M<2

=> M không là số tự nhiên

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

12 tháng 10 2016

CÁC BẠN GIẢI DÙM VỚI. NĂN NỈ ĐÓ

24 tháng 7 2016

b2=ac mà bạn

24 tháng 7 2016

b) a2=ac\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}\)

c2=bd\(\Rightarrow\) \(\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) = \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) = \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=\(\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

=> đpcm

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

29 tháng 11 2019

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

29 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!