1 điểm O, vẽ đường tròn (0;3cm) cắt Ox; Oy theo thứ tự A và B. Vẽ đường tròn (0;2cm) cắt tia Ox; Oy theo thứ tự tại C và D. Vẽ đường tròn (D;BD) cắt BO tại M và cắt đường tròn (0;2cm) tại N a) So sánh AC và BD b) Chứng tỏ M là trung điểm của OD c) So sánh tổng ON+ND với OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp(1)
Xét tứ giác OKAB có
\(\widehat{OKA}+\widehat{OBA}=180^0\)
Do đó: OKAB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra A,B,O,K,C cùng nằm trên đường tròn
a: ΔODE cân tại O
mà OK là trung tuyến
nên OK vuông góc DE
góc OKA=góc OBA=góc OCA=90 độ
=>O,K,C,A,B cùng thuộc 1 đường tròn
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC/AD=AE/AC
=>AC^2=AD*AE
c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có
góc O chung
=>ΔOKA đồng dạng với ΔOHF
=>OK/OH=OA/OF
=>OK*OF=OH*OA=OE^2=OD^2
=>FD là tiếp tuyến của (O)
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
=>MC/MO=MH/MD
=>ΔMCH đồng dạng với ΔMOD
=>góc MCH=góc MOD
=>góc HOD+góc HCD=180 độ
=>HODC nội tiếp