Cho tam giác ABC,đuờng trung tuyến BD trên tia đối của tia BD lấy E sao cho DE=BD.Gọi M,N lần luợt là trung điểm của BC và EC.Gọi P,Q lần luợt là giao điểm của AM,AN với BE.
Chứng minh: BP=PQ=QE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có BD=ED(gt)
\(\Rightarrow\frac{2}{3}BD=\frac{2}{3}ED\Rightarrow BI=ED\left(1\right)\)
\(BD=ED\Rightarrow\frac{1}{3}BD=\frac{1}{3}ED\Rightarrow ID=DK\)
lại có:\(DE=\frac{1}{3}DE+\frac{1}{3}DE+\frac{1}{3}DE\)
\(\Rightarrow\frac{2}{3}DE=DK+ID\left(DK=ID\right)\)
\(\Rightarrow KE=IK\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow BI=IK=KE\)
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> tam giác OBC vuông tại O=> BD_|_CE tại O
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100
$BC^2=10^2=100$BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O