K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

\(S=1\cdot2+2\cdot3+3\cdot4+...+2011\cdot2012\)

\(\Rightarrow3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+2011\cdot2012\cdot3\)

\(\Rightarrow3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+2011\cdot2012\cdot\left(2013-2010\right)\)

\(\Rightarrow3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+2011\cdot2012\cdot2013-2010\cdot20112012\)

\(\Rightarrow3S=2011\cdot2012\cdot2013\)

\(\Rightarrow S=\frac{2011\cdot2012\cdot2013}{3}\)

24 tháng 10 2021

qwertyuiopasdfgggggghjkllzxcvbnmm,.//234567890-=`

24 tháng 10 2021
Chịu khó đọc lại đi dễ mà
22 tháng 2 2018

Ta có:A= \(1+2+2^2+2^3+...+2^{2010}\)

=> 2A= 2(\(1+2+2^2+2^3+...+2^{2010}\))

=> 2A= 2 +\(2^2+2^3+2^4+...+2^{2011}\)

=> 2A-A= A =(2+ \(2^2+2^3+2^4+...+2^{2011}\)) -( \(1+2+2^2+2^3+...+2^{2010}\))

=> A= \(2^{2011}-1\)

Mà B = \(2^{2011}\)

=> A < B

22 tháng 2 2018

A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2010 hay A = 3 + 2^2 + 2^3 + 2^4 + ... + 2^2010 bạn

18 tháng 4 2020

Ta có : S = 1 - 2 + 22 - 23 + .... - 22009 + 22010

 => 2S = 2 - 22 + 23 - 24 + .... - 22010 + 22011

Lấy 2S trừ S theo vế ta có : 

2S + S = (2 - 22 + 23 - 24 + .... - 22010 + 22011) + (1 - 2 + 22 - 23 + .... - 22009 + 22010

       3S = 22011 + 1

Khi đó 3S - 22011 = 22011 + 1 - 22011 = 1  

18 tháng 4 2020

ccđmvvh

11 tháng 3 2018

b, |5x-3| >= 7

=> 5x-3 < = -7 hoặc 5x-3 >= 7

=> x < = -4/5 hoặc x >= 2

Vậy ..........

Tk mk nha

18 tháng 2 2017

Thang 2 nam nhuan. Vi 4 nam moi co 1 nam nhuan

HELP ME !! PLEASE !! Làm xong mình tk cho ! bài này khó quá mình không giải được nên giúp nha , nhớ giải chi tiết đó nhé !! Ai làm xong đúng nhất thì mình sẽ tk cho 3 lần !! HỨA ĐÓ

14 tháng 3 2018

a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)

\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)

\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)

\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)

\(\Rightarrow A=\text{​​}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)