tính nhanh
\(\frac{98}{115}va\frac{45}{52}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)
=> S \(>\frac{1}{100}.50\)
=> S \(>\frac{1}{2}\)
Vậy S > 1/2.
\(\frac{\frac{4}{17}-\frac{4}{45}+\frac{4}{156}}{\frac{3}{17}-\frac{3}{45}+\frac{3}{156}}=\frac{4.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}{3.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}=\frac{4}{3}\)
\(45\cdot\left(-\frac{5}{7}\right)+9\cdot5+\frac{8}{9}+135+45\cdot\frac{52}{63}\)
\(=-\frac{225}{7}+45+\frac{8}{9}+135+\frac{260}{7}\)
\(=\left(-\frac{225}{7}+\frac{260}{7}\right)+\left(45+135\right)+\frac{8}{9}\)
\(=\frac{35}{7}+180+\frac{8}{9}\)
\(=5+180+\frac{8}{9}\)
\(=185+\frac{8}{9}=185\frac{8}{9}\)
tick đúng cho tớ nha
a)48*(19+115)+134*52
48 *134 +134*52
134*(48+52)
134*100
13400
Ta có:
A = [15 x (1-1/7-1/12-1/98)] / [ 18 x (1-1/7-1/12-1/98)]
= 15/18 = 5/6
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}=\frac{15}{18}=\frac{15:3}{18:3}=\frac{5}{6}\)
k cho mk nha
A=15x(1/7-1/12-1/98)/18(1/7-1/12-1/98)
A=15/18
A=5/6
h nhe!!!
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}\)
\(A=\frac{15}{18}=\frac{5}{6}\)
Giải:
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\)
\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\)
\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\)
\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\)