M=3/3.5+3/5.7+3/7.9+...+3/97.99
tính M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Giải:
M=\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{95.97}+\dfrac{3}{97.99}\)
M=\(\dfrac{3}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}\right)\)
M=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
M=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
M=\(\dfrac{3}{2}.\dfrac{32}{99}\)
M=\(\dfrac{16}{33}\)
Chúc bạn học tốt!
\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{49.51}\)
= 3. \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{49}-\frac{1}{51}\right)\)
=\(\frac{3}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
=\(\frac{3}{2}.\frac{16}{51}\)
=\(\frac{8}{17}\)
đúng rồiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
\(A=\dfrac{3}{3.5} + \dfrac{3}{5.7} + ... + \dfrac{3}{97.99}\)
\(\Rightarrow A=\dfrac{3}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)\)
\(\Rightarrow A=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(\Rightarrow A=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\dfrac{32}{99}\)
\(\Rightarrow A=\dfrac{16}{33}\)
Vậy \(A=\dfrac{16}{33}\)
A= \(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{97.99}\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
= \(\dfrac{3}{2}.\dfrac{32}{99}\)
= \(\dfrac{3.32}{2.99}\)= \(\dfrac{3.2.3.6}{2.11.3.3}\)= \(\dfrac{6}{11}\)
Đặt A = \(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{47.49}\)
2A = \(\dfrac{3.2}{3.5}+\dfrac{3.2}{5.7}+\dfrac{3.2}{7.9}+...+\dfrac{3.2}{47.49}\)
2A = 3\(\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{47.49}\right)\)
2A = 3 \(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
2A = 3 \(\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
2A = 3 . \(\dfrac{46}{147}\)
2A = \(\dfrac{46}{49}\)
=> A = \(\dfrac{46}{49}\) : 2
=> A = \(\dfrac{23}{49}\)
B=\(\dfrac{3}{3.5}.\dfrac{3}{5.7}.....\dfrac{3}{47.49}\)
B=\(\dfrac{3}{2}.\left(\dfrac{2}{3.5}.\dfrac{2}{5.7}.....\dfrac{2}{47.49}\right)\)
B=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
B=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
B=\(\dfrac{3}{2}.\dfrac{46}{147}\)
B=\(\dfrac{23}{49}\)
a) Ta có: \(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{49\cdot51}{50^2}\)
\(=\dfrac{1}{50}\cdot\dfrac{51}{2}=\dfrac{51}{100}\)
b) Ta có: \(B=\dfrac{3}{3\cdot5}+\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+...+\dfrac{3}{47\cdot49}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{47\cdot49}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{46}{147}=\dfrac{138}{294}=\dfrac{23}{49}\)
M = 1/3-1/5+1/5-1/7+...+1/97-1/99
= 1/3-1/99
=33/99-1/99
=32/99
M=1/2.(3/3-3/5+3/5-3/7+3/7-3/9+......+3/97-3/99)
M=1/2.(1-3/99)
M=1/2.32/33=16/33