Cho số A=n(n-1)(n+1)(n2+1) với \(n\inℕ\)
a) Chứng minh \(A⋮10\)
b) Chứng minh rằng chữ số tận cùng của các số tự nhiên n và n5 là như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Lời giải:
$A=n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$
Vì $n^2$ là scp nên $n^2$ có tận cùng là $0,1,4,5,6,9$
Nếu $n^2$ tận cùng là $0$ thì $n$ tận cùng là $0$
$\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 10\vdots 5$
Nếu $n^2$ tận cùng là $5$ thì $n$ tận cùng là $5$
$\Rightarrow n\vdots 5\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 5$
Nếu $n^2$ tận cùng là $1$ hoặc $6$ thì $n^2-1$ tận cùng là $0$ hoặc $5$
$\Rightarrow n^2-1\vdots 5\Rightarrow A\vdots 5$
Nếu $n^2$ tận cùng là $4$ hoặc $9$ thì $n^2+1$ tận cùng là $5$ hoặc $0$
$\Rightarrow n^2+1\vdots 5\Rightarrow A\vdots 5$
Vậy tóm lại $A\vdots 5$
----------------
Lại có:
$A=n(n^2-1)(n^2+1)=n(n^4-1)$
Nếu $n$ chẵn thì $A=n(n^4-1)\vdots 2$
Nếu $n$ lẻ thì $n^4-1$ chẵn $\Rightarrow A=n(n^4-1)\vdots 2$
Vậy tóm lại $A\vdots 2$
Vậy $A\vdots 2; A\vdots 5\Rightarrow A\vdots 10$
b.
$A=n(n^4-1)=n^5-n\vdots 10$
$\Rightarrow n^5, n$ có cùng chữ số tận cùng.
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.
Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6. Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, da) n là số chẵn
\(\Rightarrow\) n = 2k
\(\Rightarrow\) 6n = 12k
Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.
\(\Rightarrow\) n và 6n có tận cùng như nhau
\(\Rightarrow\) ĐPCM