K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Áp dụng hằng đẳng thức ta có :

a(x+2)2+b(x+3)2+cx+5

=ax2+4ax+4a+bx2+6bx+9b+cx+5

=x2(a+b)+x(4a+6b)+4a+9b+5

Vậy............

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$a(x+2)^2+b(x+3)^3=cx+5$

$\Leftrightarrow bx^3+x^2(a+9b)+x(4a+27b)+(4a+27b)=cx+5$

Để điều này xảy ra với mọi $x\in\mathbb{R}$ thì:

\(\left\{\begin{matrix} b=0\\ a+9b=0\\ 4a+27b=c\\ 4a+27b=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b=0\\ a=0\\ c=0\\ 4a+27b=5\end{matrix}\right. \) (vô lý)

Do đó không tồn tại $a,b,c$ thỏa đề.

10 tháng 11 2023

Để tìm các hệ số a, b, c, ta cần giải phương trình trên. Đầu tiên, ta mở ngoặc và rút gọn biểu thức:
a(x^2 + 4x + 4) + b(x^3 + 9x^2 + 27x + 27) = cx + 5
ax^2 + 4ax + 4a + bx^3 + 9bx^2 + 27bx + 27b = cx + 5
bx^3 + (9b + a)x^2 + (27b + 4a)x + (27b + 4a) = cx + 5

So sánh từng hạng tử của phương trình ta được hệ phương trình sau:
b = 0
9b + a = 0
27b + 4a = c
27b + 4a = 5

Từ hệ phương trình này, ta có thể giải hệ để tìm giá trị của a, b, c:
b = 0
a = 0
c = 5

Vậy hệ số a, b, c lần lượt là 0, 0, 5.