Cho tam giác ABC. Trên nửa mặt phẳng bờ AB không chứa C. Vẽ tia AM sao cho góc MAB=ABC. Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia AN sao cho góc NAC= ACB
Chứng minh rằng: AN và AM là 2 tia đối nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
góc mAB = góc ABC (gt)
Mà 2 góc này nằm ở vị trí so le trong
Nên Am // BC (1)
Chứng minh tương tự ta có:
An // BC (2)
Từ (1) và (2) suy ra Am trùng với An
=> An và Am trùng nhau (đpcm)
a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE
Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :
AB = AD gt
BK = AE cùng bằng AC
\(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC
Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)
\(\Rightarrow AK=DE\)hai cạnh tương ứng
Vậy AM = DE/2
b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900
Mik vẽ hình thấy sai thì phải. Góc ACB , không phải góc ABC
a) Xét ΔKIM và ΔAIN có
KI=AI(I là trung điểm của KA)
\(\widehat{KIM}=\widehat{AIN}\)(hai góc đối đỉnh)
IM=IN(I là trung điểm của MN)
Do đó: ΔKIM=ΔAIN(c-g-c)
nên MK=AN(hai cạnh tương ứng)
mà AN=AC(gt)
nên MK=AC(đpcm)