Tìm x nguyên biết các phân số sau là số nguyên : a)26/x+3 ;x-2/x+3 ;x+6/x+3 ;15/x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để P là phân số thì x-3 khác 0
và x khác -3
b) 5/1
0/-4
1/-3
c) để P là số nguyên thì x+1 chia hết cho x-3
--> (x-3)+4 chia hết cho x-3
--> 4 chia hết cho x-3
--> x-3 thuộc Ư(4)={1;2;4;-1;-2;-4}
Với x-3=1 => x=4
Với x-3=2 => x=5
Với x-3=4 => x=7
Với x-3=(-1) =>x=2
Với x-3=(-2) => x=1
Với x-3=(-4) => x=(-1)
Vậy.....
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) \(\frac{32}{a-1}\)
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .
Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.
b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)
Điều kiện để 5(a+6) là phân số là:
\(_{a+6\ne0\Leftrightarrow a\ne-6}\)
Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) \(\frac{13}{x-1}\)
Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) \(\frac{x+3}{x-2}\)
Ta có :
\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)= \(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.
a, \(\dfrac{3}{x-2}\left(ĐKXĐ:x\ne2\right)\)
Để A nguyên thì \(3⋮x-2\)hay \(x-2\inƯ\left(3\right)\)
Xét bảng :
Ư(3) | x-2 | x |
3 | 3 | 5 |
-3 | -3 | -1 |
1 | 1 | 3 |
-1 | -1 | 1 |
Vậy để A nguyên thì \(x\in\left\{-1;1;3;5\right\}\)
b,\(B=-\dfrac{11}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
Để B nguyên thì
\(2x-3\inƯ\left(-11\right)\)( thuộc Ư(11) cũng được nhé như nhau cả )
Xét bảng :
2x-3 | x |
11 | 7 |
-11 | -4 |
1 | 2 |
-1 | 1 |
Vậy để B nguyên thì \(x\in\left\{-4;1;2;7\right\}\)
c, \(C=\dfrac{x+3}{x+1}=\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\left(ĐKXĐ:x\ne-1\right)\)Để C nguyên thì \(x+1\inƯ\left(2\right)\)
Xét bảng :
x+1 | x |
2 | 1 |
-2 | -3 |
1 | 0 |
-1 | -2 |
Vậy để C nguyên thì \(x\in\left\{-3;-2;0;1\right\}\)
d, \(D=\dfrac{2x+10}{x+3}=\dfrac{2x+6+4}{x+3}=\dfrac{2\left(x+3\right)}{x+3}+\dfrac{4}{x+3}=2+\dfrac{4}{x+3}\left(ĐKXĐ:x\ne-3\right)\)
Để D nguyên thì \(x+3\inƯ\left(4\right)\)
Xét bảng:
x+3 | x |
1 | -2 |
-1 | -4 |
2 | -1 |
-2 | -5 |
4 | 1 |
-4 | -7 |
Vậy để D nguyên thì \(x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
a) Để \(\frac{3}{x-1}\)là số nguyên thì 3 \(⋮\)x-1
\(\Rightarrow\)x-1\(\in\)Ư(3)={1;3;-1;-3}
+)x-1=....;....+)x+1=-3
Vì \(\frac{13}{x-1}\)thuộc Z nên 13 chia hết cho x-1
Do đó x-1 thuộc Ư(13)={1; 13}
Suy ra x thuộc {0;12}
Vậy x thuộc {0; 12}
A nguyên
=>10x-15+6 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;1;3;0\right\}\)
a;26/x+3 la so nguyen nen 2 6 chia het cho x+3
dan den x+3 thuoc uoc cua 26
ma uoc cua 26 la 1;-1;2;-2;13;-13;26;-26
khi x+3=1 thi x=-2 khi x+3=13 thi x= 10
khi x+3=-1 thi x=-4 khi x+3=-13 thi x=-16
khi x+3=2 thi x=-1 khi x+3=26 thi x= 23
khi x+3=-2 thi x=-5 khi x+3=-26 thi x= -29
x-2/x+3 la so nguyen nghia la x-2 chia het cho x+3
x-2 =x+3-5 chia het cho x+3
suy ra 5 chia het cho x+3
ma uoc cua 5 la -5;-1;5;1
khi x+3=-5thi x=-8 khi x+3 =5 thi x=2
khi x+3=-1 thi x=-4 khi x+3=1 thi x=-2
x+6/x+3 la so nguyen nen x+6 chia het cho x+3
ta co x+6 =x+3+3 chia het cho x+3
suy ra 3 chia het cho x+3
ma uoc cua x+3 la 3;1;-1;-3
khi x+3=3thi x=0 khi x+3=-3 thi x=-6
khi x+3=1 thi x=-2 khi x+3 = -1 thi x=-4
15/x-4 la so nguyen nen 15 chia het cho x-4
ma uoc cua 15 la 1;3;5;15;-1;-3;-5;-15
khi x-4=1 thi x=5 khi x-4=-1 thi x=3
khi x-4 =3 thi x=7 khi x-4 =-3 thi x=1
khi x-4=5 thi x=9 khi x-4 =-5 thi x =-1
khi x-4=15 thi x=19 khi x-4=-15 thi x=-11