cho (O)đường kính AD. Gọi H là điểm thuộc OD.kẻ dây BC vuông góc AD tại H.Lấy điểm M thuộc cung nhỏ AC , kẻ CK vuông góc AM tại K.Đường thẳng BM cắt CK tại N. Chứng minh tam giác ACN cân tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a.Ta có AK⊥CK,AH⊥CHAK⊥CK,AH⊥CH
→ˆAKC+ˆAHC=90o+90o=180o→AKC^+AHC^=90o+90o=180o
→A,H,C,K→A,H,C,K thuộc đường tròn đường kính AC
b. Vì ADAD là đường kính của (O)
→AB⊥BD→AB⊥BD
Mà BH⊥AD→AB2=AH.ADBH⊥AD→AB2=AH.AD
c. Vì BC⊥AD→B,CBC⊥AD→B,C đối xứng qua AD
→ˆABC=ˆACB→ABC^=ACB^
Mà AMCBAMCB nội tiếp (O)→ˆKMC=ˆABC(O)→KMC^=ABC^
→ˆNMK=ˆAMB=ˆACB=ˆABC=ˆKMC→NMK^=AMB^=ACB^=ABC^=KMC^
Xét 2 tam giác vuông ΔMKNΔMKN và ΔMKCΔMKC có:
KMKM chung
ˆNMK=ˆKMCNMK^=KMC^ (cmt)
⇒ΔMKN=ΔMKC⇒ΔMKN=ΔMKC (cạnh góc vuông-góc nhọn)
⇒KN=KC⇒AK⇒KN=KC⇒AK vừa là đường cao vừa là trung tuyến ΔANCΔANC
⇒ΔANC⇒ΔANC cân đỉnh AA.
d. Vì ΔACNΔACN cân tại A →AN=AC→AN=AC
Mà B,C đối xứng qua AD
→AC=AB→AN=AB→ΔABN→AC=AB→AN=AB→ΔABN cân đỉnh AA
Lấy E là trung điểm BN→AE⊥BN→AE⊥BN
→E→E là trung điểm BN
→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22
Dấu = xảy ra khi AE=BE→ˆABE=45o→ˆABM=45oAE=BE→ABE^=45o→ABM^=45o
a) Vì BC ⊥ AD tại H => \(\widehat{AHC}\) = 90o
CK ⊥ AM tại K => \(\widehat{AKC}\) = 90o
Xét tứ giác AHCK , có : \(\widehat{AHC}+\widehat{AKC}\) = 90o + 90o = 180o mà 2 góc ở vị trí đối nhau
=> tứ giác AHCK nội tiếp đường tròn
=> 4 điểm A , H , C , K cùng thuộc 1 đường tròn
Vậy A , H , C , K cùng thuộc 1 đường tròn.
b)
Do AB là đường kính và D thuộc đường tròn
\(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\) hay tam giác ADB vuông tại D
Xét tam với vuông ADB với đường cao DH, áp dụng hệ thức lượng ta có:
\(AD^2=AH.AB\)
a, Học sinh tự chứng minh
b, DADB vuông tại D, có đường cao DH Þ A D 2 = AH.AB
c, E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ; E A C ^ = K H C ^ (Tứ giác AKCH nội tiếp)
=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).
Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)
Xét \(\Delta ABM\) và \(\Delta ACN:\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)
\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)
b) Xét \(\Delta ABH\) và \(\Delta ACK:\)
\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)
\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).
\(\Rightarrow\) AH = AK (2 cạnh tương ứng).
c) Xét \(\Delta AOH\) và \(\Delta AOK:\)
\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).
\(\Rightarrow\) OH = OK (2 cạnh tương ứng).
Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)
\(\Rightarrow\) OB = OC.
\(\Rightarrow\Delta OBC\) cân tại O.
ai trả lời hộ đi