Khi nào thì hai đường thẳng y = ax + b ( a ≠ 0) và y = a'x + b' (a' ≠ 0) cắt nhau? Song song với nhau? Trùng nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường thẳng y = ax + b và y = a'x + b' (a, a' ≠ 0)
- Cắt nhau khi và chỉ khi a ≠ a'
- Song song với nhau khi và chỉ khi a = a', b ≠ b'
- Trùng nhau khi và chỉ khi a = a', b = b'
Hai đường thẳng y = ax + b và y = a'x + b' (a, a' ≠ 0)
- Cắt nhau khi và chỉ khi a ≠ a'
- Song song với nhau khi và chỉ khi a = a', b ≠ b'
- Trùng nhau khi và chỉ khi a = a', b = b'
- Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi chúng không có điểm chung.
- Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi chúng có một điểm chung.
- Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y = a'x + b'\left( {a' \ne 0} \right)\) trùng nhau khi chúng có vô số điểm chung.
Cho hai đường thẳng :
(d): y = ax + b (a ≠ 0)
(d’): y = a’x + b’ (a’ ≠ 0)
Thế thì:
(d) cắt (d’) ⇔ a ≠ a’
(d) // (d’) ⇔ a = a’, b ≠ b’
(d) trùng (d’) ⇔ a = a’, b = b’
Đáp án A
Cho hai đường thẳng d: y = ax + b (a ≠ 0) và d': y = a'x + b'(a' ≠ 0)
d cắt d' ⇔ a ≠ a'
Đáp án A
Cho hai đường thẳng d: y = ax + b (a ≠ 0) và d': y = a'x + b'(a' ≠ 0)
d cắt d' ⇔ a ≠ a'
Phương trình tổng quát của đường thẳng \(d,d'\) lần lượt là: \(ax - y + b = 0,{\rm{ }}a'x - y + b' = 0\).
Do đó \(\overrightarrow {{n_d}} = \left( {a; - 1} \right),{\rm{ }}\overrightarrow {{n_{d'}}} = \left( {a'; - 1} \right)\).
Ta có \(d \bot d' \Leftrightarrow \overrightarrow {{n_d}} \bot \overrightarrow {{n_{d'}}} \Leftrightarrow \overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0 \Leftrightarrow a.a' + \left( { - 1} \right)\left( { - 1} \right) = 0 \Leftrightarrow a.a' = - 1\).
Bài 1.
a. Hàm số đồng biến khi hệ số a > 0
b. Hàm số nghịch biến khi hệ số a < 0.
Bài 2. Hai đường thẳng cắt nhau khi a khác a'
Hìa đường thẳng song song với nhau khi a = a' và b khác b'
Hai đường thẳng trùng nhau khi a =a' và b = b'
Hai đường thẳng y = ax + b và y = a'x + b' (a, a' ≠ 0)
- Cắt nhau khi và chỉ khi a ≠ a'
- Song song với nhau khi và chỉ khi a = a', b ≠ b'
- Trùng nhau khi và chỉ khi a = a', b = b'
Đường thẳng song song Cho đường thẳng d có phương trình là y = a x + b ( a ≠ 0 ) y=ax+b(a≠0) và đường thẳng d' có phương trình là y = a ′ x + b ′ ( a ′ ≠ 0 ) y=a′x+b′(a′≠0). Khi đó d và d' song song khi và chỉ khi a = a ′ a=a′ và b ≠ b ′ b≠b′ Chú ý: nếu a=a' và b=b' thì d trùng d' 2. Đường thẳng cắt nhau Cho đường thẳng d có phương trình là y = a x + b ( a ≠ 0 ) y=ax+b(a≠0) và đường thẳng d' có phương trình là y = a ′ x + b ′ ( a ′ ≠ 0 ) y=a′x+b′(a′≠0). Khi đó d và d' cắt nhau khi và chỉ khi a ≠ a ′ a≠a′ Chú ý: nếu a ≠ a ′ a≠a′ và b=b' thì d cắt d' tại một điểm trên trục tung có tung độ là b