K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

4/3 x ( 1/6 - 1/2 )

=4/3 x  -1/3

= -4/9

NV
24 tháng 3 2021

Gọi số dinh dưỡng A cần là x và số dinh dưỡng B cần là y

Ta có hệ điều kiện: \(\left\{{}\begin{matrix}4\le x+y\le10\\0\le x\le6\\0\le y\le5\\\dfrac{x}{2}\le y\le3x\end{matrix}\right.\) (1)

Hàm chi phí: \(f\left(x;y\right)=8x+7y\)

Phần đồ thị biểu diễn miền hệ điều kiện (1) là phần đa giác ABCDEF như bên dưới:

Trong đó \(A\left(\dfrac{5}{3};5\right)\) ; \(B\left(5,5\right)\) ; \(C\left(6;4\right)\) ; \(D\left(6;3\right)\) ; \(E\left(\dfrac{8}{3};\dfrac{4}{3}\right)\) ; \(F\left(1;3\right)\)

undefined

Thay tọa độ của 6 điểm trên vào hàm \(f\left(x;y\right)\) và tính giá trị, ta thấy \(f\left(x;y\right)\) nhỏ nhất tại \(F\left(1;3\right)\) tức cần 1 dinh dưỡng A và 3 dinh dưỡng B để chi phí nhỏ nhất

24 tháng 3 2021

tóm tắt sương sương

1 ngày x-A

y-B  Nên 8x+7y min

\(\left\{{}\begin{matrix}4\le x+y\le10\\0\le x\le6\\0\le y\le5\\\dfrac{1}{2}x\le y\le3x\end{matrix}\right.\)

nhìn đề hơi loại ạ

7 tháng 4 2016

Giúp mình với !

24 tháng 2 2016

ta xét 2 TH:

+)A>0 (luôn đúng)

+)ta có : 1/n2 < 1/(n-1).n với n>1

=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1}-\frac{1}{2014}=\frac{2013}{2014}<1\)

=>A<1

do đó 0<A<1 <=>[A]=0

19 tháng 3 2017
suy ra
29 tháng 1 2016
  • Yêu cầu, gợi ý các bạn khác chọn () đúng cho mình
  1. 6

 

5 tháng 12 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{2014^2}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2013.2014}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=1-\frac{1}{2014}\)

A<B<1

[A]=0