K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath

8 tháng 2 2019

Phương trình tương đương với:

\(6x+6y+48=9xy\)\(\Leftrightarrow9xy-6x-6y=48\)\(\Leftrightarrow9xy-6x-6y+4=52\)\(\Leftrightarrow3x\left(3y-2\right)-2\left(3y-2\right)=52\)\(\Leftrightarrow\left(3x-2\right)\left(3y-2\right)=52.\)

Do \(x,y\inℕ^∗\)nên \(3x-2;3y-2\ge1\). Do đó 3x - 2 và 3y - 2 là các ước nguyên dương của 52 gồm 1;4;13;52.

Do \(x,y\inℕ^∗\)nên 3x - 2; 3y - 2 chia 3 dư 1. Do vai trò của x và y như nhau nên giả sử x \(\le\)y, ta có 2 trường hợp sau:

  • \(\hept{\begin{cases}3x-2=1\\3y-2=52\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=18\end{cases}.}}\)
  • \(\hept{\begin{cases}3x-2=4\\3y-2=13\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}.}}\)

Đảo vai trò của x và y cho nhau ta có 4 cặp số (x;y) nguyên dương thoả mãn đề bài: (1;18),(18;1),(2;5),(5;2).

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

NV
21 tháng 2 2021

\(\Leftrightarrow3x\left(y+2\right)+y+2-54=0\)

\(\Leftrightarrow\left(3x+1\right)\left(y+2\right)=54\)

Mặt khác ta có \(3x+1\) luôn chia 3 dư 1, mà 54 có đúng 1 ước dương chia 3 dư 1 là 1

\(\Rightarrow\left\{{}\begin{matrix}3x+1=1\\y+2=54\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=52\end{matrix}\right.\) (ktm x;y nguyên dương)

Do đó pt đã cho ko có nghiệm nguyên dương

5 tháng 3 2020

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương 

=> xy=0 hoặc xy-1 =0 

+) Nếu xy=0 thay vào (1) ta có 

\(x^2+y^2=0\Leftrightarrow x=y=0\)

+)Nếu xy-1 =0 hay xy=1 ta có 

\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)

Vậy x=0 ; y=0

5 tháng 3 2020

Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0

Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)

Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p

+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.

+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:

\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)

Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)

\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)

Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5

Khi đó x = y = 2.

22 tháng 11 2019

Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath