Chứng tỏ rằng:
1/12+1/32+1/42 +...+1/1002<1
ai nhanh mk k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
Ta có:
1/41 + 1/42 + .....+1/60 < 1/40 . 20 = 1/2
1/61 + 1/62 +.......+1/80 < 1/60 . 20 = 1/3
=> 1/41 + 1/42 +.....+1/79 + 1/80 < 1/2 + 1/3 = 5/6
1/41 + 1/42 +...+1/60 > 1/60 . 20 = 1/3
1/61 + 1/62 +....+ 1/80 > 1/80 . 20 = 1/4
=> 1/41 + 1/42 +.......+ 1/79 + 1/80 > 1/3 + 1/4 = 7/12
KL: Vậy 7/12 < 1/41 + 1/42 +.....+ 1/80 < 5/6 (đpcm)
Mình nghĩ phải là \(\frac{1}{2^2}\) mới đúng >.<
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Chúc bạn học tốt ~
đề bài sai rồi nha bạn
Phải là 1/2^2+1/3^2+...+1/100^2 < 1 chứ