ta có: a3+b3>(=)ab(a+b); c3+a3>(=)ca(c+a)
\(\Rightarrow\frac{1}{2a^3+b^3+c^3+2}\le\frac{bc}{\left(b+c\right)\left(a+b+c\right)}\le\frac{b+c}{4\left(a+b+c\right)}\)
tương tự =>đpcm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
Thực hiện phép nhân đa thức với đa thức ở vế trái.
=> VT = VP (đpcm)
a )
`VP= (a+b)^3-3ab(a+b)`
`=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`
`=a^3+b^3 =VT (đpcm)`
b)
b) Ta có
`VT=a3+b3+c3−3abc`
`=(a+b)3−3ab(a+b)+c3−3abc`
`=[(a+b)3+c3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`
`=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`
a) Ta có:
`VP= (a+b)^3-3ab(a+b)`
`=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`
`=a^3 + b^3=VT(dpcm)`
b) Ta có
`VT=a^3+b^3+c^3−3abc`
`=(a+b)^3−3ab(a+b)+c^3−3abc`
`=[(a+b)^3+c^3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`
`=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`
\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left(y^2-z^2\right)+y\left(-y^2+z^2-x^2+y^2\right)+z\left(x^2-y^2\right)=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)=\left(y-z\right)\left(y+z\right)\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(y-z\right)=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c+abc+b^2c\right)\)
\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 5:
\(a+b=1\Rightarrow a=1-b\)
\(M=a^3+b^3=\left(1-b\right)^3+b^3=1-3b+3b^2-b^3+b^3\)
\(=1-3b+3b^2=3\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(minM=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 7:
\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\)
\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng do a,b dương)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
5.
Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow2a^2+2b^2\ge a^2+b^2+2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)
\(M=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=a^2+b^2-ab\)
\(M=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\ge\dfrac{3}{2}.\dfrac{1}{2}-\dfrac{1}{2}=\dfrac{1}{4}\)
\(M_{min}=\dfrac{1}{4}\) khi \(a=b=\dfrac{1}{2}\)
6.
Do \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2>0\)
Mà \(a^2-ab+b^2>0\Rightarrow a+b>0\)
Mặt khác với mọi a;b ta có:
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow ab\le\dfrac{1}{4}\left(a+b\right)^2\) \(\Rightarrow-ab\ge-\dfrac{1}{4}\left(a+b\right)^2\)
Từ đó:
\(2=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^3-3.\dfrac{1}{4}\left(a+b\right)^2\left(a+b\right)=\dfrac{1}{4}\left(a+b\right)^3\)
\(\Rightarrow\left(a+b\right)^3\le8\Rightarrow a+b\le2\)
\(N_{max}=2\) khi \(a=b=1\)
toán lớp 2 ???????????????????
sao lại toán lớp 2 ?