tính:
a) (\(\dfrac{3}{7}\)+\(\dfrac{1}{2}\))\(^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{-7}{8}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+3+\dfrac{7}{8}=\dfrac{-7}{8}+\dfrac{7}{8}+3=3\)
b: \(=-\dfrac{8}{5}:\dfrac{5}{3}=-\dfrac{24}{25}\)
c: \(=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{6}{8}=\dfrac{6}{7}-\dfrac{5}{8}=\dfrac{48}{56}-\dfrac{35}{56}=\dfrac{13}{56}\)
a: \(=\dfrac{13}{3}+\dfrac{17}{6}=\dfrac{26}{6}+\dfrac{17}{6}=\dfrac{43}{6}\)
b: \(=7-\dfrac{8}{3}=\dfrac{21-8}{3}=\dfrac{13}{3}\)
c: \(=\dfrac{17}{7}\cdot\dfrac{7}{4}=\dfrac{17}{4}\)
d: \(=\dfrac{16}{3}:\dfrac{16}{5}=\dfrac{16}{3}\cdot\dfrac{5}{16}=\dfrac{5}{3}\)
a) $\frac{5}{2} \times \frac{4}{3} + \frac{1}{3} = \frac{{10}}{3} + \frac{1}{3} = \frac{{11}}{3}$
b) $\frac{7}{3} - \frac{2}{3}:\frac{5}{7} = \frac{7}{3} - \frac{2}{3} \times \frac{7}{5} = \frac{7}{3} - \frac{{14}}{{15}} = \frac{{35}}{{15}} - \frac{{14}}{{15}} = \frac{{21}}{{15}} = \frac{7}{5}$
c) $\frac{3}{4} \times \left( {\frac{5}{2} - \frac{3}{2}} \right) = \frac{3}{4} \times 1 = \frac{3}{4}$
a) \(\dfrac{7}{8} + \dfrac{7}{8}:\dfrac{1}{8} - \dfrac{1}{2}\)
\(\begin{array}{l} = \dfrac{7}{8} + \dfrac{7}{8}.8 - \dfrac{1}{2}\\ = \dfrac{7}{8}.1 + \dfrac{7}{8}.8 - \dfrac{1}{2}\\ = \left( {\dfrac{7}{8}.1 + \dfrac{7}{8}.8} \right) - \dfrac{1}{2}\\ = \dfrac{7}{8}.\left( {1 + 8} \right) - \dfrac{1}{2} = \dfrac{7}{8}.9 - \dfrac{1}{2}\\ = \dfrac{{63}}{8} - \dfrac{1}{2} = \dfrac{{63}}{8} - \dfrac{4}{8} = \dfrac{{63 - 4}}{8} = \dfrac{{59}}{8}\end{array}\)
b) \(\dfrac{6}{{11}} + \dfrac{{11}}{3}.\dfrac{3}{{22}}\)
\(\begin{array}{l} = \dfrac{6}{{11}} + \dfrac{{11.3}}{{3.22}} = \dfrac{6}{{11}} + \dfrac{1}{2}\\ = \dfrac{{12}}{{22}} + \dfrac{{11}}{{22}} = \dfrac{{12 + 11}}{{22}} = \dfrac{{23}}{{22}}\end{array}\)
a) \(\dfrac{3}{5} - \dfrac{{ - 1}}{3}\)
\( = \dfrac{{3.3}}{{5.3}} - \dfrac{{ - 1.5}}{{3.5}}\)
\( = \dfrac{9}{{15}} - \dfrac{{ - 5}}{{15}} = \dfrac{{9 - \left( { - 5} \right)}}{{15}} = \dfrac{{14}}{{15}}\)
b) \( - 3 - \dfrac{2}{7}\)
\(\begin{array}{l} = \dfrac{{ - 3.7}}{{1.7}} - \dfrac{2}{7}\\ = \dfrac{{ - 21}}{7} - \dfrac{2}{7}\\ = \dfrac{{ - 21 - 2}}{7}\\ = \dfrac{{ - 23}}{7}\end{array}\)
a: \(\dfrac{7}{3}+\dfrac{4}{9}=\dfrac{21}{9}+\dfrac{4}{9}=\dfrac{21+4}{9}=\dfrac{25}{9}\)
b: \(\dfrac{3}{14}+6=\dfrac{3+6\cdot14}{14}=\dfrac{84+3}{14}=\dfrac{87}{14}\)
c: \(\dfrac{7}{8}-\dfrac{1}{2}=\dfrac{7}{8}-\dfrac{4}{8}=\dfrac{7-4}{8}=\dfrac{3}{8}\)
d: \(5-\dfrac{9}{10}=\dfrac{50}{10}-\dfrac{9}{10}=\dfrac{50-9}{10}=\dfrac{41}{10}\)
a) \(\dfrac{-4}{6}\)
b) \(\dfrac{1}{3}\)-\(\dfrac{20}{60}\)
= 0
c) \(-20^2\)+(\(-50^3\))
= -400 + (-125000)
=-125400
d) \(\dfrac{-2}{7}\)+\(\dfrac{15}{35}\)
= \(\dfrac{-10}{35}\)+\(\dfrac{15}{35}\)
= \(\dfrac{5}{35}\)=\(\dfrac{1}{7}\)
\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{3\cdot2+7}{14}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
\(\left[\dfrac{6}{14}+\dfrac{7}{14}\right]^2=\left[\dfrac{13}{14}\right]^4=\dfrac{169}{196}\)