cho x,y,z>0 và x+y+z=4. CMR \(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có: \(\frac{x^2+4yz}{2}\ge2x\sqrt{yz}\)
\(\Rightarrow\frac{2}{x^2+4yz}\le\frac{1}{2x\sqrt{yz}}\Rightarrow\frac{1}{x^2+4yz}\le\frac{1}{4x\sqrt{yz}}\)
Cộng theo vế ta có:
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}\le\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\)
Cần chứng minh \(\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\le\frac{1}{xyz}\)
Nhân 2 vế với \(xyz\) ta lại được BĐT cần c/m tương đương với:
\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le1\)
Áp dụng BĐT AM-GM lần nữa ta có:
\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{1}{4}\left(x+y+z\right)=1\) (Đúng)
Vậy BĐT đầu đã được c/m
ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này
Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.
Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)
Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)
\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)
\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))
Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.
Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.
\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2=\frac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)
Vậy:
\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(x+y\right)^2}{1+4xy}+\frac{\left(y+z\right)^2}{1+4yz}+\frac{\left(z+x\right)^2}{1+4zx}\right]\)
\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(2x+2y+2z\right)^2}{3+4\left(xy+yz+zx\right)}\right]\ge\frac{\sqrt{3}}{2}.\frac{9}{3+\frac{4}{3}\left(x+y+z\right)^2}=\frac{3\sqrt{3}}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
\(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\) mà sao thế vào là \(\frac{\sqrt{3}}{2}\left(x+y\right)^2\) vậy ạ?