K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

1/

A B C M

Ta có MA + MB > AB (bất đẳng thức tam giác)

MA + MC > AC (bất đẳng thức tam giác)

MB + MC > BC (bất đẳng thức tam giác)

=> 2 (MA + MB + MC) > AB + AC + BC

=> \(MA+MB+MC>\frac{AB+AC+BC}{2}\) (1)

Ta có MA + MB < AC + BC (bất đẳng thức tam giác)

MB + MC < AB + AC (bất đẳng thức tam giác)

MA + MC < AB + BC (bất đẳng thức tam giác)

=> 2 (MA + MB + MC) < 2 (AB + AC + BC)

=> MA + MB + MC < AB + AC + BC (2)

Từ (1) và (2) => \(\frac{1}{2}\left(AB+AC+BC\right)< AM+BM+CM< AB+AC+BC\)(đpcm)

25 tháng 3 2018

2/


A B C M I

Kéo dài tia MB cắt AC tại I.

\(\Delta AMI\)có: MA < IA + MI (bất đẳng thức tam giác) (*)

Cộng hai vế của (*) cho MB, ta có: MA + MB < IA + MI + MB

=> MA + MB < IA + IB (1)

\(\Delta BIC\)có: IB < IC + BC (bất đẳng thức tam giác) (**)

Cộng hai vế của (**) cho IA, ta có: IA + IB < IA + IC + BC

=> IA + IB < AC + BC (2)

Từ (1) và (2) => MA + MB < AC + BC (đpcm)

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta ABC\),...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
19 tháng 2 2018

a/ Ta có AB < AC (gt) => HB < HC (quan hệ giữa đường xiên và hình chiếu)

=> BM < CM (quan hệ giữa đường xiên và hình chiếu)

a: Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

=>BM<CM

b: Ta có: ΔHBM vuông tại H

nên \(\widehat{HMB}< 90^0\)

=>\(\widehat{DMH}>90^0\)

=>DH>DM