K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

15 tháng 3 2016

x+ 2y+3xy - x - y + 3 = 0

(x2 - y2) + (3y2 + 3xy) - (x + y) = -3

(x - y)(x + y) + 3y(x + y) - (x + y) = -3

(x + y)(x + 2y -1) = -3 = 1.(-3) = (-1).3

(x;y)=(4;-3) (-6;5)

25 tháng 12 2016

\(x^2+2y^2+3xy-2x-4y+3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)

25 tháng 12 2016

đề đúg hay sai vậy

 

6 tháng 1 2018

ta có pt 

<=>\(x^2+xy+2y^2+2xy-\left(x+y\right)+3=0\)

<=>\(x\left(x+y\right)+2y\left(x+y\right)-\left(x+y\right)=-3\)

<=>\(\left(x+y\right)\left(x+2y-1\right)=-3\)

đến đây thì xét nghiệm nguyên của 3 và tự giải nhé !

^_^

6 tháng 9 2016

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

1 tháng 3 2017

ai lam on giup to voi