Tính \(\frac{A}{B}\) biết :
A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)
B = \(\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2007}+\frac{1}{2008}\)
Giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 299A = \(1-\frac{1}{400}\) A= \(\frac{399}{400}\) :299
101B = \(1-\frac{1}{400}\) B = \(\frac{399}{400}\):101
\(\frac{A}{B}=\frac{299}{101}\)
Làm tắt ý a, mấy ý kia biết làm nhưng dài lắm
Ta có :
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)
\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)
Vậy \(\frac{A}{B}=\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)
\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)
\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)
\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)
Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)
\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)
Bí òi
Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1004}\)
\(A=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\) (1)
\(B=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}=1\)