Cho tam giác ABC (AB<AC) có đường phân giác AD. Từ B kẽ đường thẳng vuông góc AD cắt AC tại E
c/m rằng
a)AB>BD và AC>CD
b)BD<CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/S 3 chữ hoa liên tiếp là góc :D
a,Ta có :\(AD//BC=>DAC=BCA\)
Xét Tam giác ABC và tam giác CDA
\(BC=DA\)(gt)
\(BCA=DAC\)(cmt)
\(CA\)cạnh chung
\(=>\Delta ABC=\Delta CDA\left(c-g-c\right)\)
b,Ta có : \(AD//BC=>ADB=CBD\)
Xét tam giác ABD và tam giác CDB
\(BC=AD\)(gt)
\(ADB=CBD\)(cmt)
\(BD\)cạnh chung
\(=>\Delta ABD=\Delta CDB\left(c-g-c\right)\)
c,Xét tam giác ODA và tam giác OBC
\(DBC=BDA\)(cm câu b)
\(AD=BC\)(gt)
\(DAC=ACB\)(cm câu a)
\(=>\Delta ODA=\Delta OBC\left(g-c-g\right)\)
a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/4=DC/5=(DB+DC)/(4+5)=6/9=2/3
=>DB=8/3cm; DC=10/3cm
b: Xét ΔBAC có DK//AB
nên DK/AB=CD/CB
=>DK/4=10/3:6=10/18=5/9
=>DK=20/9cm
Xét ΔBAC có DE//AC
nên DE/AC=BD/BC
=>DE/5=8/3:6=8/18=4/9
=>DE=20/9cm
Xét tứ giác AEDK có
AE//DK
AK//DE
=>AEDK là hbh
mà AD là phân giác
nên AEDK là hình thoi
=>AE+DE=DK=AK=20/9cm
Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
CB chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc IBC=góc ICB
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>góc BAI=góc CAI
=>AI là phân giác của góc BAC
c: Xét ΔABH vuông tại B và ΔACH vuông tại C có
AH chung
AB=AC
Do đó: ΔABH=ΔACH
=>HB=HC
mà AB=AC
nên AH là trung trực của BC
ai tra loi nhanh minh k
Mik ko bít
k đi