K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Xét và có:
DE=FB
 =
AB = DC
  =(c.g.c)
 EC= AF

Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE 
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành


b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )

Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN 
-> AC, MN,BD đồng quy tại O

 

22 tháng 8 2021

là sao bạn

 

31 tháng 10 2020

A N B F C M D E O

a) Ta có : tứ giác ABCD là hình bình hành (gt)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của AC (1)

và O là trung điểm của BD

\(\Rightarrow OB=OD\)

mà \(DE=BF\left(gt\right)\)

\(\Rightarrow OB-BF=OD-DE\)

\(\Rightarrow OF=OE\)

\(\Rightarrow\)O là trung điểm của EF (2)

Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành

b) Ta có : tứ giác AECF là hinh bình hành (cma)

\(\Rightarrow AE//CF\)

\(\Rightarrow AM//CN\left(3\right)\)

Ta có : tứ giác ABCD là hinh bình hành (gt)

\(\Rightarrow AB//CD\)

\(\Rightarrow AN//CM\left(4\right)\)

TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành 

\(\Rightarrow AM=CN\)

c) Ta có : tứ giác ANMC là hinh bình hành (cmb)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của NM

và O là trung điểm của AC

mà O là trung điểm của BD

\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

a: Xét ΔAED và ΔCFB có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

DE=BF

Do đó: ΔAED=ΔCFB

Suy ra:  AE=CF

Xét ΔABF và ΔCDE có

AB=CD

\(\widehat{ABF}=\widehat{CDE}\)

BF=DE

Do đó: ΔABF=ΔCDE

Suy ra: AF=CE

Xét tứ giác AECF có

AF=CE

AE=CF

Do đó: AECF là hình bình hành

4 tháng 9 2019

A B C D F E O G H M P N

a) Gọi O là giao điểm của BD và AC

Theo bài ra ta có: \(BE=DF< \frac{BD}{2}\)

=> DF<DO và BF< BO

=> E nằm giữa B và O ;

F nằm giữa D và O

O là giao điểm 2 đường chéo của hình bình hành ABCD => OB=OD

Theo bài ra : EB = FD

=> OB-EB= OD-FD

=> OF=OE

Xét tứ giác AECF có: O là trung điểm EF ( OE=OF) và O là trung điểm AC ( ABCD là hình bình hành)

=> AECF là hình bình hành

b) G/s: AN =NM=MB => AM=2/3 AB 

=> M là trọng tâm tam giác AGC

mà O là trung điểm AC

=> G; M; O thẳng hàng  (1) 

Gọi H là giao điểm của CM và AG 

=> H là trung điểm AG , 

Lấy P là trung điểm GM

=> HP là đường trung bình của tam giác GAM 

=> HP// = 1/2 AM

=> HP//= MB

=> HPBM là hình bình hành

=> PB//=HM

=> PB //ME 

Xét tam giác OPB có PB//ME ; M là trung điểm OP

=> ME là đường trung bình

=> E là trung điểm OB

Vậy E là trung điểm OB với O là giao điểm của hai đường chéo hình bình hành ABCD

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.