Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{4}{3\times5}+\frac{4}{5\times7}+\frac{4}{7\times9}+...+\frac{4}{99\times101}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)
\(\Leftrightarrow\frac{A}{2}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Leftrightarrow\frac{A}{2}=\frac{1}{3}-\frac{1}{101}\)
\(\Leftrightarrow\frac{A}{2}=\frac{98}{303}\)
\(\Leftrightarrow A=\frac{98}{303}\times2\)
\(\Leftrightarrow A=\frac{196}{303}\)
B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101
B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101
B= 1/3 - 1/101
B=98/303
( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )
\(E=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(\Rightarrow E=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\) (đặt 2 làm nhân tử chung để ta có các số hạng trong ngoặc có hiệu 2 số ở mẫu = tử)
\(\Rightarrow E=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow E=2.\left(1-\frac{1}{99}\right)\)
\(\Rightarrow E=2.\frac{98}{99}\)
\(\Rightarrow E=\frac{196}{99}\)
*Không biết có đúng ko :)
Ta có:
\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)
4/3x5 + 4/5x7 +....+ 4/99x 101
=4x(1/3x5 + 1/5x7 +....+1/99x101)
=4x1/2x(1/3-1/5 + 1/5 -1/7+...+ 1/99 -1/101)
=4 x 1/2x(1/3 - 1/101)
=196/303