So sánh \(\frac{13^{15}+1}{13^{16}+1}\)và \(\frac{13^{16}+1}{13^{17}+1}\)
Nhanh tay nhanh tay
Càng nhanh càng tốt
Bn nk nhanh mik tick nha ( P trình bày nha bn và p đ đx)
Camom!!
Thăn kiiuu nhìu nhìuu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{7}{15}< \frac{7}{14}=\frac{1}{2};\frac{15}{23}>\frac{15}{30}=\frac{1}{2}\text{ hay }\frac{7}{15}< \frac{1}{2}< \frac{15}{23}\)
Vậy \(\frac{7}{15}< \frac{15}{23}\).
b. \(x=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13x=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
\(y=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13y=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì \(13^{17}+1>13^{16}+1\) nên \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
Mà 1 = 1 => \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\text{ hay }13x< 13y\)
=> x < y.
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Ta thấy:
\(13^{16}+1< 13^{17}+1\)
\(\Rightarrow\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
hay \(A>B\)
Vậy \(A>B.\)
Gọi \(\frac{13^{15}+1}{13^{16}+1}\)là S, \(\frac{13^{16}+1}{13^{17}+1}\)là X
\(13\cdot S=13\cdot\frac{13^{15+1}}{13^{16}+1}=\frac{13.\left(13^{15}+1\right)}{13^{16}+1}=\frac{13^{16}+13}{13^{16}+1}\)\(=\frac{13^{16}+1+12}{13^{16}+1}=\frac{13^{16}+1}{13^{16}+1}+\frac{12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(13\cdot X=13.\frac{13^{16}+1}{13^{17}+1}=\frac{13\cdot\left(13^{16}+1\right)}{13^{17}+1}=\frac{13^{17}+13}{13^{17}+1}\)\(=\frac{13^{17}+1+12}{13^{17}+1}=\frac{13^{17}+1}{13^{17}+1}+\frac{12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Do \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)\(\rightarrow13\cdot S>13\cdot X\)\(\rightarrow S>X\)