K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

20 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM

Bài 2: 

Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

18 tháng 2 2018

a) Làm theo bạn Doan Thanh phuong  nhé!

b) Ta có:  A = 90o => Tam giác ABC vuông tại a.

Áp dụng định lý Pitago. Ta có:

\(AB^2+AC^2=BC^2\Leftrightarrow3^2+4^2=9+16=25\)

\(\Rightarrow BC^2=25\). Mà \(25=5^2\Rightarrow BC=5\) cm

18 tháng 2 2018

a) Xét tam giác ABC và tam giác A'B'C' có :

      \(\widehat{A}=\widehat{A'}\left(gt\right)\)

      AB = A'B' ( gt )

       AC = A'C' ( gt )

Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )

b) Ta có tam giác ABC vuông tại A ( gt )

=> AB2 + AC= BC2 ( định lý Py-ta-go )

hay 32  +  42   = BC2

      BC2          = 32 + 42 = 9 + 16 = 25

=> BC = 5

8 tháng 3 2018

không nha

vì 6/9 khác 8/15

=> hai tam giác ko đồng dạng

Xét ΔABC có:

\(\widehat{BAC}=90^o\)

\(\Rightarrow\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

             \(=5^2-3^2\)

             \(=25-9\)

             \(=16\)

\(\Rightarrow AC=4cm\)

Mà \(AB=3cm\)

\(\Rightarrow\widehat{ABC}>\widehat{ACB}\left(đl\right)\)

3 tháng 5 2023

Đây là định lý pytago? Nếu đúng là vậy thì xem lại, vì lớp 7 mới không học định lý này.