K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

26 tháng 12 2016

dung roi

24 tháng 3 2020

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

2 tháng 2 2022

Ta có :O là trung điểm của BC(gt)

           O là trung điểm của AK(OA=OK)

=>ABKC là hình bình hành(dhnb)

Mà góc BAC = 90 độ

=>ABKC là hình chữ nhật (dhnb)

=>AB=CK và góc ACK = 90 độ

Xét tam giác ABC và tam giác CKA có:

 AB=CK(cmt)

 góc BAC=góc KCA( cùng bằng 90 độ)

 AC chung

Vậy tam giác ABC = tam giác CKA(c.g.c)

b)Xét tam giác AHB và tam giác CHA có

 góc AHB = góc CHA (=90 độ)

 góc BAH =góc ACH(cùng phụ với góc B)

Vậy tam giác AHB đồng dạng tam giác CHA(g.g)

=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)

Ta có AH\(\perp\)CH

         ED\(\perp\)CH

=>AH//DE

Xét tam giác ACH có

 AH//DE

=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)

=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)

Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)

                    =>AB=AE(đpcm)

2 tháng 2 2022

-Lớp 7 chưa học Tam giác đồng dạng?

24 tháng 3 2020

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath