CMR: tam giác Có 1 góc vuông là tam giác vuông :P
CTV bơi hết vào đây
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Do hình vuông là tứ giác có 4 góc vuông.
Mà hình chữ nhật là hình vuông đặc biệt =) hình chữ nhật là tứ giác có 4 góc vuông.
Do hình thoi là tứ giác có 4 cạnh bằng nhau
Mà hình vuông là hình thoi đặc biệt=) hinh vuông có 4 cạnh bằng nhau.
M phải chứng minh được nó chứ ? m ko chứng minh được mày nói cũng = thừa
Thằng thiểu năng, ai bảo m tam giác có 1 góc vuông thì không phải tam giác cân
Có phải là lớp 8 không vậy?
CMR: Tam giác có 3 cạnh bằng nhau là tam giác đều
Ta vẽ \(\Delta ABC\)có AB = AC = BC
Ta có AB = AC nên \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)(1)
và AB = BC nên \(\Delta ABC\)cân tại B => \(\widehat{A}=\widehat{C}\)(2)
Từ (1) và (2) => \(\widehat{A}=\widehat{B}=\widehat{C}\)=> \(\Delta ABC\)đều (đpcm)
CMR: Tam giác có 2 cạnh bằng nhau là tam giác cân.
Ta vẽ \(\Delta ABC\)có AB = AC.
Kẻ AH \(\perp\)BC tại H.
\(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (gt)
Cạnh AH chung
=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) => \(\widehat{B}=\widehat{C}\)(hai góc tương ứng)
=> \(\Delta ABC\)cân tại A (đpcm)
huy hoàng t nói mãi mà mày éo hiểu ak ?
tại sao AB=AC thì suy ra ABC là tam giác cân " mày phải CM được AB=AC thì ABC là tam giác cân "
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
A B C H M N
a) Vì AB = AC =10cm => (đpcm)
b) Xét \(\Delta AHB\)và \(\Delta AHC\)có;
AB = AC(gt)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)(1)
\(\Rightarrow\widehat{B}=\widehat{C}\)(2 góc tương ứng)(2)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\Rightarrow\)AH là tia phân giác của \(\widehat{A}\)
c) HM với HN?
Vì \(\Delta HMB;\Delta HNC\)là tam giác vuông nên từ (1);(2) =>\(\Delta HMB=\Delta HNC\)
e)Xét \(\Delta AHC\)vuông:
Áp dụng định lí Py ta go ta có:
\(AC^2=CH^2+AH^2\)
\(12^2=6^2+AH^2\)
\(\Rightarrow AH^2=12^2-6^2=144-36=108\)
\(\Rightarrow AH=\sqrt{108}cm\)
hình tự vẽ nhá!
a, Vì ^B = ^C
=> t/g ABC cân tại A
=> AB = AC
Vì tam giác ABC cân tại A nên đường cao AH cũng là đường trung tuyến
=> HB = HC
XÉt t//g ABH và t/g ACH có :
AB = AC ( cmt )
^B = ^C ( gt )
HB = HC ( cmt )
=> t/ ABH = t/g ACH ( g.c.g)
b, Vì HA = HB (Cmt)
AH vuông góc BC
=> AH là trung trực BC
c, Vì tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\) (1)
Xét t/g HMB và t/g HNC có:
HB = HC (cmt)
^B = ^C
^BHM = ^CHN ( = 90 độ )
=> t/g HMB = t/g HNC ( ch-gn )
=>HM = HN
Xét t/g AMH và t/g ANH có :
^AMH = ^ANH (=90 độ)
AH chung
HM = HN ( cmt)
=> t/g AMH = t/g ANH (ch-cgv)
=>AM = AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^o-\widehat{MAN}}{2}\) (2)
Từ (1) và (2) => ^AMN = ^ABC
MÀ 2 góc này ở vị trí đồng vị
=> MN // BC (ĐPCM)
a, xét tam giác ABH và tam giác ACH có AH chung
góc AHC = góc AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
b, ta giác ABH = tam giác ACH (câu a)
=> HB = HC (đn)
xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác BHF = tam giác CHE (ch-gn)
=> BF = CE (đn)
AB = AC (câu a)
BF + FA = AB
CE + AE = AC
=> FA = AE
=> tam giác AFE cân tại A (đn)
c, tam giác AFE cân tại A (Câu b)
=> góc AFE = (180 - góc BAC) : 2 (tc)
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)
=> góc AFE = góc ABC mà 2 góc này đồng vị
=> FE // BC (định lí)
t trả lời cho, khoi phải nhờ bọn CTV:
.
Do hình có từ vuông trong tên chắc chắn sẽ có it nhất 1 góc vuông ( trừ HCM )
Nên tam giác vuông là tam giác có 1 góc vuông.
.
m ngu à từ vuông có thể có nhiều góc vuông nhé chứ ko phải 1 sai rồi