Tìm \(a,b\in N\)\(a\ne0\)thỏa mãn
\(\frac{1}{a}-\frac{b}{6}=\frac{1}{3}\)
Jup mik vs mink đang r cần
Bn nk tl nhanh mik tick cho ( P đúng nha ^ ^ :)
Minh camon ((:^ ^ :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=7(5/2×7+4/7×11+3/11×14+1/14×15+13/15×28)
B=7(1/2-1/7+1/7-1/11+1/11-1/14+1/14-1/15+1/15-1/28)
B=7(1/2-1/28)
B=7×13/28
B=13/4
Làm như thế này đúng rồi mình học rồi mà bạn cứ yên tâm!
Và cho mình xin lỗi máy mình ko viết được phân số xin lỗi nhiều k cho mình nha!
Ai đi ngang cho xin 1 k! Nhà mình nghèo lắm
1 ) Ta có :
b - a = 1 => b và a là hai số nguyên liên tiếp
MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( - 8 ) và ( - 9 )
Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
2 ) \(\frac{1}{2.y}\)= \(\frac{x}{3}-\frac{1}{6}\)
\(\frac{1}{2y}\)= \(\frac{2x-1}{6}\)
=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z
=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
Lập bảng giá trị tương ứng giá trị của x , y :
2x - 1 | - 6 | - 3 | - 2 | - 1 | 1 | 2 | 3 | 6 |
x | / | - 1 | / | 0 | 1 | / | 2 | / |
2y | - 1 | - 2 | - 3 | - 6 | 6 | 3 | 2 | 1 |
y | / | - 1 | / | - 3 | 3 | / | 1 | / |
\(\frac{5}{x}=\frac{2y+1}{6}=x\left(2y+1\right)=5.6=30.\)vì y thuộc z nên 2y+1 thuộc z và x thuộc z mà x(2y+1)=30 nên x;2y+1 thuộc Ư(30)={-1;1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}.
Vì 2y+1 là số lẻ nên ta có bảng sau:
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
---|---|---|---|---|---|---|---|---|
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
Vậy các cặp số nguyên (x;y) thỏa mãn đề bài là:......................................
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\)
\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)
từ đề bài ta có \(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
=> \(\frac{1}{a}=\frac{1}{3}+\frac{b}{6}=\frac{2+b}{6}\)
=> \(a=\frac{6}{2+b}\) Vì a là số tự nhiên khác không nên \(\frac{6}{2+b}\inℕ^∗\)
=> \(2+b\inƯ\left(6\right)\left\{1;2;3;6\right\}\)
=> \(b=\left\{0;1;4\right\}\) => \(a=\left\{3;2;1\right\}\)
Vậy ta đc cặp số \(\left(a;b\right)=\left\{\left(0;3\right);\left(1;2\right);\left(4;1\right)\right\}\)