K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

A B C M D

a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:

MC < MD + DC

Vậy thì DB + DC = BM + MD + DC > BM + CM

b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD

Vậy nên AB + AC = AB + AD + DC > BD + DC

Lại theo câu a thì DB + DC > BM + CM

Vậy nên AB + AC > BM + CM

c) Chứng minh tương tự ta có các khẳng đỉnh sau:

AB + BC > MA + MC

BC + AC > MB + MA

Cộng vế với 3 bất đẳng thức ta có:

2(AB + BC + CA) > 2(MA + MB + MC)

\(\Rightarrow MA+MB+MC< AB+BC+CA.\) 

13 tháng 8 2018

Bài giải : 

a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:

MC < MD + DC

Vậy thì DB + DC = BM + MD + DC > BM + CM

b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD

Vậy nên AB + AC = AB + AD + DC > BD + DC

Lại theo câu a thì DB + DC > BM + CM

Vậy nên AB + AC > BM + CM

c) Chứng minh tương tự ta có các khẳng đỉnh sau:

AB + BC > MA + MC

BC + AC > MB + MA

Cộng vế với 3 bất đẳng thức ta có:

2(AB + BC + CA) > 2(MA + MB + MC)

⇒MA+MB+MC<AB+BC+CA. 

2 tháng 6 2021

eûr

4eddws3ewdedswswdwxewdswszcczcwdwdswdsdxxw

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha