K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

      \(n^3-n^2-n-2\)

\(=n^3-2n^2+n^2-2n+n-2\)

\(=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)\)

\(=\left(n-2\right)\left(n^2+n+1\right)\)

Điều kiện cần để \(n^3-n^2-n-2\)là số nguyên tố:

\(\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=3\\\orbr{\begin{cases}n=0\\n=-1\left(loai\right)\end{cases}}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}}\)

Từ đó tìm được n = 3 và n = 0

Vì là điều kiện cần nên ta phải thử lại

\(n=3\Rightarrow n^3-n^2-n-2==13\)(thỏa mãn)

\(n=0\Rightarrow n^3-n^2-n-2=-2\) (loại)

Vậy n = 3

Chúc bạn học tốt.

12 tháng 10 2018

\(n^3-n^2-n-2=n^3-2n^2+n^2-2n+n-2\)

\(=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)=\left(n-2\right)\left(n^2+n+1\right)\)

\(\Rightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=3\\n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n^3-n^2-n-2=11\left(TM\right)\\n^3-n^2-n-2=-2\left(L\right)\end{cases}}}\)

Vậy n=3

13 tháng 12 2016

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

7 tháng 12 2014

số 2 đáp án là 23 _ 22 + 2 - 1 = 5

7 tháng 12 2014

Đặt A = n3 - n2 + n - 1

Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)

Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :

TH1 : n - 1 = 1 và n2 + 1 nguyên tố \(\Rightarrow\)n = 2 và n2 + 1 = 5 nguyên tố (thỏa)

TH2 : n2 + 1 = 1 và n - 1 nguyên tố \(\Rightarrow\)n = 0 và n - 1 = - 1( ko thỏa)

Vậy n = 2

14 tháng 1 2016

1 số nguyên tố

2 n = 1 ; n = 2

 

14 tháng 1 2016

Giải thích ra giùm mình với!