giải phương trình :
a, x4=4x+1
b, x4=2x2+8x+3
Giúp mình với, mình đang cần gấp nè.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)
\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)
\(=\left(2x-y+2\right)^2\)
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Cách 1:
x 4 − 2 x 2 − 3 = 0 ⇔ x 4 − 3 x 2 + x 2 − 3 = 0 ⇔ ( x 2 − 3 ) ( x 2 + 1 ) = 0 ⇔ x 2 − 3 = 0 x 2 + 1 = 0 ⇔ x = ± 3 V n ( x 2 ≥ 0 ⇒ x 2 + 1 > 0 )
Vây phương trình có tập nghiệm S = − 3 ; 3
Cách 2: Đặt t=x2 ( t ≥ 0 ) ta có phương trình t2-2t-3=0 (2)
Ta có a-b+c=1+2-3=0 nên phương trình (2) có 2 nghiệm t1=-1(loại);t2=3(nhận)
Với t2=3 ⇔ x 2 = 3 ⇔ x = ± 3
Vậy phương trình có tập nghiệm S = − 3 ; 3
\(x^4+2x^2-3=0\)\(\Leftrightarrow\left(x^4+2x^2+1\right)-4=0\Leftrightarrow\left(x^2+1\right)^2-2^2=0\Leftrightarrow\left(x^2-1\right)\left(x^2+3\right)=0\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)
Đặt t = x2 ( t ≥ 0 )
pt đã cho trở thành t2 + 2t - 3 = 0
Xét pt bậc 2 ẩn t có a + b + c = 0 nên pt có hai nghiệm t1 = 1(tm) ; t2 = c/a = -3 (ktm)
=> x2 = 1 <=> x = ±1
Vậy ...
a) \(\Leftrightarrow x^4-4x-1=0\)
\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)
\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)
\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)
Tự giải pt bậc 2 nhak :))))