Cho các số thực dương a,b,c thỏa mãn \(2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=6\)
Tìm MIN: \(P=\frac{bc}{a\left(2b+c\right)}+\frac{ca}{b\left(2a+c\right)}+\frac{4ab}{c\left(a+b\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)
\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)
Áp dụng BĐT Cauchy-Schwarz lại có:
\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:
\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)
Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
\(\Rightarrow\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}\cdot\frac{b+c}{4bc}}=\frac{1}{a}\)
\(\Rightarrow\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge2\sqrt{\frac{ca}{b^2\left(c+a\right)}\cdot\frac{c+a}{4ca}}=\frac{1}{b}\)
\(\Rightarrow\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}\cdot\frac{a+b}{4ab}}=\frac{1}{c}\)
Cộng theo vế các bất đẳng thức trên ta được:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}+\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)nên:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Bất đẳng thức xảy ra khi \(a=b=c\)
Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)
Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)
Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)
Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)
\(P=\frac{bc}{2ab+ac}+\frac{ca}{2ab+bc}+\frac{4ab}{bc+ca}\)
Xét \(Q=P+3=\frac{bc}{2ab+ac}+1+\frac{ca}{2ab+bc}+1+\frac{4ab}{bc+ca}+1\)
\(Q=\frac{2ab+ac+bc}{2ab+ac}+\frac{2ab+ac+bc}{2ab+bc}+\frac{4ab+bc+ca}{bc+ca}\)
\(=\left(2ab+ac+bc\right)\left(\frac{1}{2ab+ac}+\frac{1}{2ab+bc}\right)+\frac{4ab+bc+ca}{bc+ca}\)
\(\ge\left(2ab+ac+bc\right)\frac{4}{4ab+ac+bc}+\frac{4ab+bc+ca}{bc+ca}=K\)(Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a, b không âm)
\(K=\frac{2\left(4ab+ac+bc\right)+2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)\(+\frac{7\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)
\(=2+\left[\frac{2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\right]+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)
\(\ge2+2\sqrt{\frac{2\left(ac+bc\right)}{4ab+ac+bc}.\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}}+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)(Áp dụng BĐT Cô - si cho 2 số không âm)
\(=\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)
Mặt khác: \(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a^3+b^3\right)}{a^2b^2}\)
\(=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}\)\(\ge\frac{2.2ab}{ab}+\frac{c\left(a+b\right)\left(2ab-ab\right)}{a^2b^2}=4+\frac{ac+bc}{ab}\)(theo BĐT \(a^2+b^2\ge2ab\))
\(\Rightarrow\frac{ac+bc}{ab}\le2\Leftrightarrow\frac{ab}{ac+bc}\ge\frac{1}{2}\)
\(\Rightarrow K\ge\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\ge\frac{37}{9}+\frac{7}{9}.\frac{4}{2}=\frac{17}{3}\)
Ta có \(Q=P+3\ge K\ge\frac{17}{3}\Rightarrow P\ge\frac{17}{3}-3=\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}2ab+ac=2ab+bc\\\frac{2\left(ac+bc\right)}{4ab+ac+bc}=\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\\a=b\end{cases}}\)\(\Leftrightarrow a=b=c\)
Từ \(2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=6\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\)
ta có \(a^2+b^2\ge2ab\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\ge\frac{c\left(a+b\right)}{ab}+4\)
\(\Rightarrow0< \frac{c\left(a+b\right)}{ab}\le2\)
Lại có
\(\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}=\frac{\left(bc\right)^2}{abc\left(2b+c\right)}+\frac{\left(ac\right)^2}{abc\left(2a+c\right)}\ge\frac{\left(bc+ac\right)^2}{2abc\left(a+b+c\right)}\)\(=\frac{\left[c\left(a+b\right)\right]^2}{2abc\left(a+b+c\right)}\)
và \(abc\left(a+b+c\right)=ab\cdot bc+bc\cdot ba+ab\cdot ca\le\frac{\left(ab+bc+ca\right)^2}{3}\)
\(\Rightarrow\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}\ge\frac{3}{2}\left(\frac{c\left(a+b\right)}{ab+bc+ca}\right)^2=\frac{3}{2}\left(\frac{\frac{c\left(a+b\right)}{ab}}{1+\frac{c\left(a+b\right)}{ab}}\right)^2\)
Đặt \(t=\frac{c\left(a+b\right)}{ab}\Rightarrow P\ge\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}\left(0< t\le2\right)\)
Có \(\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}=\left(\frac{3t^2}{\left(1+t\right)^2}+\frac{4}{t}-\frac{8}{3}\right)+\frac{8}{3}=\frac{-7t^2-8t^2+32t+24}{6t\left(1+t\right)^2}+\frac{8}{3}\)
\(=\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}\ge0\forall t\in(0;2]\)
=> \(\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}+\frac{8}{3}\ge\frac{8}{3}\forall t\in(0;2]\frac{1}{2}\)
Dấu "=" xảy ra <=> t=2 hay a=b=c